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conducted at the Coastal Engineering Research Center (CERCQ) of the
gineering Research Center (CERC) of the
U.S. Army Engineer Waterways Experiment Station (WES). Authorization for
ES to perform the study was granted in SPN Intra-Army Orders E86933014

Two-dimensional model tests were conducted at WES during the period
August 1992 through March 1993 and three-dimensional (3-D) model tests
were conducted intermittently from May 1993 through August 1994 by
personnel of the Wave Research Branch (WRB) of the Wave Dynamics
Division (WDD), CERC, under the direction of Dr. James R. Houston and
Mr. Charles C. Calhoun, Jr., Director and Assistant Director of CERC, respec-
tively; and the direct guidance of Messrs. C. E. Chatham, Jr., Chief of WDD;
and Mr. D. D. Davidson, Chief of WRB. Tests were conducted by
Messrs. Leiand L. Hennington, Civii Engineer; Raymond Reed, Civil Engi-
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necring 1ecnnician, L. Kay nernglon, Livil eEnginecring 1 ecnmniciai, JOIiiuly
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Technician; and Ernest R. Smith, Research Hydraulic Engineer. A supplemen-
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Appendix A (Concrete Armor Unit Structural Investigation for the Offshore
Novo, CA, Breakwater) and written by Messrs. Jeff A. Melby and George F
Turk. This report was prepared by Messrs. Smith and Hennington

Liaison was maintained with SPN through monthly progress reports and
telephone conversations during the course of the investigation. Mr. Jeff Cole
was SPN’s primary point of contact (POC) during two-dimensional (2-D)
testing of the breakwater. Prior to construction of the 2-D breakwater cross
section, Messrs. Cole and Joe Hooks, SPN; and Michael Deneche and Louis
Sanchez, Sogreah Engineering, France, visited WES and demonstrated proper
Accropode placement techniques and observed 2-D stability model tests.

Mr. Sanchez visited WES prior to construction of the 3-D breakwater to
demonstrate proper placement of Accropodes on breakwater heads.

Mr. Tom Bonigut was SPN’s POC during the 3-D testing of the
breakwater. During 3-D testing of the Noyo breakwater, a meeting was held at

OTIAT .

SPN to discuss future plans for model testing. Attending the meeting were



Messrs. Bonigut, Hooks, Tom Kendall, Herb Cheong, Ken Harrington, Bill
Angeloni, Rod Chisolm, and Gary Ohea, SPN, and Mr. Smith, WES.

At the time of publication of this report, Director
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1 INroauctuion
The Prototype

Noyo River and Harbor are located on the California coast at Fort Bragg,
approximately 217 km' north of San Francisco and 140 km south of Eureka
(Figure 1). The shoreline of the area consists of broken irregular cliffs about
12 to 24 m high with numerous rocks extending several hundred meters off-
shore. Small pocket beaches front heads of coves in the immediate vicinity.
The Noyo River empties into Noyo Cove, which is approximately 550 m wide,

o

north to south, and 610 m 1ong, east to west.

The existing Noyo River and Harbor project was authorized by the River
and Harbor Act of 1930 (U.S. Army Engineer District, San Francisco 1979),
and construction was completed in 1961. It consists of a jettied entrance at the
river mouth; a 3-m-deep, 30.5-m-wide entrance channel; and a 3-m-deep,

, ar
ver channel thendmg upstream about 1 km.

is locs ted on the south bank of the river at the uostream 11m1t of t e
dredged river channel. Dolphin Isle Marina, a privately owned harbor, is
located approximately 1.8 km from the river mouth on the south bank. An
aerial photograph of the area is shown in Figure 2.
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The Problem

Noyo Cove is open to the Pacific Ocean and is exposed to high waves
generated by seas and swell. Waves in excess of 6 m approach the cove
covering directions from the southwest to the northwest. The entrance is
impassable if heavy seas sweep across the cove and through the jettied river
entrance. The harbor has also experienced strong surging Droblems due to

long-period wave energy, which has damaged small moored craft. Shoaling
has occurred in the river channel by deposition of material from the river
during the winter rainy season, which causes navigational difficulties in the

Chapter 1 Introduction
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Figure 1. Location of Noyo Harbor
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shallow river channel. Vessels have been grounded and navigation delayed
until favorable tide conditions were present to provide passable depths.

Improvements at Noyo River and Harbor would result in the reduction of
boat and harbor damages, increased commercial fish catch, reduction in
navigation delays and gear losses, and a reduction in operation and mainte-
nance costs for the existing channel entrance jetties. The proposed breakwater
would facilitate safe navigation in the entrance channel, and provide improved

1 .

helter without becoming a navigation hazard itseif. Project

A three-dimensional model of Noyo Harbor was constructed to investigate
short- and long-period waves and river flows for a proposed breakwater. A
two-dimensional study was also conducted at a 1:31 model scale to determine
wave transmission for the proposed breakwater and the results were used to
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It was later determined that most benefits would be derived for 4.3-m wave
heights or less. Additional tests were conducted on the model by Bottin and
Mize (1989) for waves 4.3 m and lower. Bottin and Mize found several
combinations of breakwaters that would meet the established wave height
criteria of 1.8 m or less in the river entrance channel.

Purpose of Study

express 1 construction of an outer breakwater that
would provide navigational protection from the extreme wave conditions at
Noyo Cove. At the request of the U.S. Army Engineer District, San Francisco
(SPN), two- and three-dimensional wave tests were conducted at the

U.S. Army Engineer Waterways Experiment Station (WES) Coastal Engineer-
ing Research Center to determine the optimum breakwater cross section and
head in terms of stability. Additionally, tests were conducted to determine the
proper cross section to be used in the 1:75 Noyo Harbor model, reported
separately by Bottin (1994), in terms of wave transmission. The proposed
breakwater consisted of Accropode armor units, which are patented by
Sogreah, France, and described by Chida, Kaihatsu, and Kobayashi (1992).

Local interests expressed interest in constructio,

Chapter 1 Introduction



Two-dimensional stability tests were also conducted with dolos armor units.
Core-Locs, a new armor unit design discussed by Melby and Turk (1994),
were used in addition to Accropodes in the three-dimensional stability tests.
An important consideration of concrete armor units is the structural integrity of
the individual units. Therefore, a structural analysis was performed to compare
the structural response of the Accropode, Core-Loc, and dolos armor units.

This report describes the design, facilities used, and results of the two-
dimensional stability tests (Chapter 2), three-dimensional stability tests
(Chapter 3), and two-dimensional transmission tests (Chapter 4). Conclusions
are listed in Chapter 5. Appendix A contains results of the structural stability
analysis; Appendices B and C contain photographs of the two- and three-
dimensional stability tests, respectively; and Appendix D inciudes symbol
notation used in the report.



Design of model

Two-dimensional stability tests were conducted at a geometrically undis-

Scale was based on size

.3, model to prototype.

f 1:43

torted linear scale of

*1

o

.1

1

availability of model Accropodes and dolosse and the capabilities of the avail-

1

1

-

1

able wave generator to produce required wave heig

1

1

Table 1

43.3 scale)

Model:Prototype

1:43.3

Iy

1:1875

a =

Dimension

I2
13

Model-Prototype Scale Relations (1

| Length

Area
Time

Two-Dimensional Stability Tests
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MODEL ARMOR UNITS
NOYO HARBOR, CA
2-D STABILITY TESTS
1:43.3 SCALE

Figure 3. Model armor units used in two-dimensional stability tests,
prototype weights from left; 7.6-m® Accropode, 5.9-m® dolos,
7.9-m°® dolos, 3.8-m® dolos, and 9.1-m® Accropode

where

m = model quantities
p = prototype quantities
W, = weight of individual armor or stone
v, = specific weight of an individual armor unit or stone
L,/1, = linear scale of the model
S, = specific gravity of an individual armor unit or stone relative to the
water in which it is placed
S, =v/Y,., and v, is the specific weight of water

A consideration of all rubble-mound physical models is the scale effect of
viscous forces associated with flow through the underlayers and core of the
structure. To reproduce prototype conditions, the model must consist of
materials of a sufficient size to ensure turbulent flow through the structure.
The method of Keulegan (1973) was used to check, and modify if necessary,
the core W, and underlayer W, model material sizes for viscous effects. The
geometrically scaled underlayer size was found to be satisfactory, but the core
size was increased for all plans to account for scale effects. Prototype and
model armor layer W,, underlayer W,, core W,, and toe berm W, material sizes
are listed in Table 2.

Chapter 2 Two-Dimensional Stability Tests



Tabie 2
Prototype and Modei Materiai Sizes
Prototype
Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Armor Accropode Accropode Dolos Dolos Dolos
Type
w, 9.1 7.6 3.8 7.9 5.9
m3
w, 1,500 to 1,500 to 453 to 957 to 957 to
kg 3,000 3,000 1,814 3,828 3,828
W, 1 t0 500 1 10 500 1045 31098 31096
kg
w, 50 to 500 50 to 500 227 227 227
kg
Modei
Plan 1 Plan 2 Plan 3 Plan 4 Plan 5§
Armor Accropode Accropode Dolos Dolos Dolos
Type
W, 0.260 0.213 0.125 0.267 0.200
kg
W, 0.018 to 0.0i8 1o 0.011 o 0.0i18 o 0.018 o
kg 0.029 0.029 0.018 0.029 0.029
W, 0.018 to 0.018 to 0.011 to 0.018 to 0.018 to
kg 0.029 0.029 0.018 0.029 0.029
W, 0.002 to 0.002 to 0.011 to 0.011 to 0.011 to
kg 0.005 0.005 0.018 0.018 0.018

Test facilities and equipment

Tests were conducted in a 47.2-m-long, 0.6-m-wide, 1.8-m-deep wave tank.
Figure 4 shows tank dimensions, bottom slopes, gage placement, and structure
location for stability tests. A concrete-capped, compound slope was installed

to represent local Datnymetry seaward of the breakwater location. A 1V:20H

cANn A N

siope originated at a prowtype depth of 20.4 m mean iower low water (miiw),
terminated, and 1 lw dep The breakw

a1 o 4L .

il[dldl[ e91mm
r«4
O

h. The breakwater cross

<rina Aigtan~a Eanmann
ype distance) from

b3
o
w
=
P C'
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Absorber |Horizontal 1:33.3 Horizontal 1:20 Absorber

Section (o] Slope Section Siope QPO | Bdction GO 3.6 m
152 r 76 m 50 m 66 m 44 m~
Gage 1 Array 1 Array 3
1 i TN
< [l il
3 im Tt

7.6 )]

472 m

periodic displacement of the wave board. Random wave command signals to
drive the wave board were generated to simulate a Texel Marsen Arsloe
(TMA) shallow-water spectrum (Hughes 1984) for the design wave periods.
Regular waves were generated by command signals produced by a synthesized

function generator.

Water surface elevations were recorded by single wire capacitance-type
gages, sampled at 20 Hz. Ten gages were used during calibration of the
facility, but only seven were used during stability tests. Gage 1 was placed
near the wave board to obtain offshore wave heights, and the remaining gages
were placed in arrays of three gages each, which permitted calculation of
incident and reflected wave heights by the method of Goda and Suzuki (1976).

LW 2 Y- -~ S, . -

Array 1 was positioned approximately 105.5 m prototype seaward of th
OGN .

@

henalratar tnn Tranats Acasr A ssrnc wlarad af tha Tanatinm ~F tha hesaloatan
DICAKWALCTL LUC 10CallVll, Alldy 4 Wdd plaCtl dl UIC 10Caioll U1 UI€ vl walcl
tnaa and Asvarxr 2 mrag nlanad anneavimatalyy TNE & 1 sventntuna charasrraed AF
t0€, ana Array > § piaCca approximateiy 1ud.5 Il prototype snorewarG oi
tha ctrmetnra Arrav ) wae need anlv dnring calihratian of the facility and wac
UiV ouuviiul v, rgvoysy & YVAO Uuovu Ulll] Uulllls VALIUVLIALIVIL V1 UiV 14aviiity, auau vvao
removed nrior to construction of the initial breakwater cross section. Wave
remoy prior (o construction of the miial dréaxwallr Cross section. wave
data obtained from Arrays 1 and 3 during tests provided incident and
transmitted wave data, respectively, and were stored on a MicroVax II mini-

computer and analyzed using the Time Series Analysis computer program
(Long and Ward 1987), which can execute several analysis operations. The
operations used for two-dimensional stability tests were mean downcrossing
analysis to obtain significant, maximum, and average wave heights, significant
and average wave periods, and mean water levels at each gage; single channel
frequency domain analysis to acquire peak period T, zero-moment wave
height H,,,, and spectral density plots for each gage; and unidirectional spectral
density incident/reflection analysis to determine the incident and reflected
parameters at each array.

Prior to conducting tests, the facility was calibrated without the breakwater
in place for design wave periods at +2.13 m miilw. Figures 5, 6, and 7 show
prototype wave height versus percent of maximum generator stroke for random
waves having peak periods of 13, 17, and 20 sec, respectively. The maximum
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Figure 7. Wave height versus generator stroke, 20-sec random waves

H,, produced at +2.13-m mllw for the slope installed was 5.8 m prototype
with a 13-sec period. As generator stroke increased, the higher waves in the
spectrum became depth limited and broke. It was desired to subject the
breakwater to higher H,, values than could be obtained using random waves.
The maximum wave heights H, . produced were 8.5 m for the 13- and 17-sec
periods, and 7.3 m for the 20-sec period. Therefore, it was expected that H,,,
values of the magnitude of the H,,, values could be expected if regular waves
were generated at periods T of 13, 17, and 20 sec. Zero-moment wave height
is plotted for regular waves versus generator stroke for waves at Array 1 (H,,),
and Array 2 (H,,), in Figures 8 through 10. The figures show that the off-
shore wave height and the wave height at the structure are nearly identical for
lower waves, but deviate as offshore height increases and waves approach
depth-limited conditions and begin to decay in height. Although Figures 8
and 9 show maximum (H,,), as 7.6 and 7 m, respectively, it was later found
that a height of 8.2 m could be produced at 70 percent of stroke for 13-sec
periods, and a 7.6-m wave could be generated with an 83 percent stroke with a
17-sec period. Figure 10 shows no decrease in wave height over the range of
stroke, and the maximum wave height was approximately 7.6 m at maximum
stroke. The figure indicates that the 20-sec waves were limited by generator
stroke and not a depth-limited condition. Breakwater stability tests were con-
ducted for the design still-water level (swl) and wave heights listed in Table 3.

11
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Tabie 3
[ Py Mg | g iy S Y Y PRl o P |1} gy
Slapility 1est wave vonaitons
SWL T Hoo Hiax Test Duration
Wave Type m, milw sec m m Cycles model min
Random +2.13 13 4.6 7.3 1 15
Random +2.13 17 4.6 8.5 i i5
Random +2.13 20 4.3 7.3 1 15
Random +2.13 13 5.5 8.5 1 15
Random +2.13 i7 4.9 8.2 i i5
Random +2.13 20 4.3 7.3 1 15
Regular +2.13 13 6.4 6.4 5 15
Regular +2.13 17 6.4 6.4 5 15
Regular +2.13 20 6.4 6.4 5 15
Regular +2.13 13 7.0 7.0 5 15
Regular +2.13 17 7.0 7.0 5 15
Regular +2.13 20 7.0 7.0 5 15
Regular +2.13 13 7.6 7.6 5 15
Regular +2.13 17 7.6 7.6 5 15
Regular +2.13 20 7.6 7.6 5 15
Regutar +2.13 13 8.2 82 5 15
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Test procedures

Photographs were taken prior to stability tests. The tank was flooded to the
appropriate depth and the structure was exposed to one cycle of low-level
waves listed in Table 3. These initial waves allowed settling and nesting of
the newly constructed section which would occur under typical daily wave
conditions prior to being exposed to a design-level storm. The low-level
waves also provided transmission data for non-overtopping conditions. After
the structure was exposed to low-level waves, the wave conditions listed in
Table 3 were generated. Prototype duration for each wave height was 99 min
(900 sec model). Test durations were completed with one cycle of random
waves for 900 sec, and five cycles of regular waves in bursts of 180 sec each.
The procedure of testing in bursts for regular waves prevented contamination
of incident waves by waves re-reflected from the wave generator. Wave
heights and period varied for the random wave tests; therefore, a longer record
was required for the series to obtain a statistically strong confidence interval
for calculating the wave spectrum. Reflection and re-reflection between the
structure and the wave board could not be avoided in the random wave tests.
Upon completion of a cycle, sufficient time was provided for the water surface
to settle before the next cycle began.

The response of the structure to each cycle of test waves was recorded.
Detailed model observation included movement of units on the structure and a
general statement of the structural condition. At the conclusion of the design
conditions, the tank was drained and the condition of the structure was summa-
rized in notes and documented with photographs. Before and after test photo-
graphs are shown in Appendix B. After documentation of the initial tests was
completed, the armor units were removed, and the underlayer stone was
straightened as needed. The armor units were replaced and the test was
repeated. The purpose of the repeat test was to determine the presence of any
uncontrolled variations in model construction technique that might affect
stability of the structure.

Model construction

Construction of the modeled section simulated prototype construction as
closely as possible. The core, bedding, and underlayer of material were
dumped by bucket or shovel, smoothed to grade, and compacted with hand
trowels to simulate consolidation that would have occurred due to wave action.
The armor layer was then placed on the structure.

Accropode placement. The design of Plan 1, 9-m’ (24-ton) Accropodes,
was furnished by Sogreah, France. Accropode breakwaters consist of one
layer of armor placed on a 3V:4H slope. Representatives of Sogreah visited
WES prior to initiation of the Accropode stability tests. The representatives
demonstrated the proper placement of the Accropode cross sections, and
assisted with construction of the initial plan. Accropodes are placed according

Chapter 2 Two-Dimensional Stability Tests



to a "mesh," which is a function of armor unit size, specifically, the length of
the Accropode anvil. The special Accropode placement was used for initial
and repeat tests of both 9-m* and 7.6-m® (20-ton) Accropode cross sections.

Dolos placement. Breakwaters constructed of dolosse are placed in two
layers at a 1V:2H slope. The units were placed by hand in a random manner
below mllw. Random placement consists of placing the unit in contact with
adjacent units on the structure, with no attempt to orient the axes of the dolos
or key the unit to the structure. Dolos placed above mllw were placed in
contact with adjacent units and keyed in fashion that would be similar to
prototype construction.

WS - 1) cotd
a\Fa J

in which K, is the stability coefficient, H, is the highest wave height at the
structure that causes no damage, i.e., wave height at which damage is less than
or equal to 2 percent, and 0 is the angle of the structure slope measured from
horizontal in degrees. In the present study, the zero moment wave height H,,,
was used to caiculate stability coefficients for both random and reguiar waves.

Resuits

Stability tests were conducted for five breakwater cross sections at a model
scale of 1:43.3. Accropodes were used as the primary armor unit for Plans 1
and 2, and dolosse were used in Plans 3, 4, and 5. Each plan was subjected to
the series of wave conditions listed in Table 3. The structure was rebuilt
following each initial series of wave conditions and stability tests were
repeated, with the exception of Plans 4 and 5. The purpose of repeating the
tests was to ensure consistency in building the breakwater and to verify resuits.
Repeat tests of Plans 1 through 3 indicated construction of the cross section
was consistent with the original building. Repeat tests of Plans 4 and 5 were
omitted because repeat tests showed duplicate stability rest nd it was
desired to determine the optimal dolos cross secti
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cross section was used in the three-dimensional harbor study of Noyo Cove
(Bottin 1994).

Qualitative results were taken for overtopping. The wave period and height
and category of overtopping were noted for each run. If overtopping occurred,
it was characterized as minor, moderate, or major.

Plan 1

Plan 1 (Figure 11, Photos B1 through B3), proposed by SPN and Sogreah,
consisted of one layer of 9-m* Accropode armor units placed on a 3V:4H
slope. The underlayer consisted of stone ranging from 1,500 to 3,000 kg, core
material ranged from 1 to 5,000 kg, and the toe berm was constructed of
50- to 500-kg stone.

r_7-0 m—1 6.1 n milw

34 mn milw
125 m miw

2.84 m milw

0.00 m mllw

=53 n mliw

-91 m mlw

Figure 11. Plan 1, two-dimensional stability tests

The structure was stable for original and repeat tests for the design wave
conditions at +2.13 m mllw. Plan 1 suffered no damage for the test conditions
with no units displaced or rocking (Photos B4 through B6). A stability coeffi-
cient of 19.0 was calculated for Plan 1, using Equation 2 with the maximum
H,, of 8.2 m. The structure did not reach a damaged condition and based on
observations of the tests, a higher K, would have been attained if waves were
not limited by depth. Although the armor layer was not damaged, the toe
berm material fronting the cross section was displaced.

Plan 2

Results from Plan 1 showed the 9-m® Accropode units were stable and a
less conservative (lighter) armor unit would also be stable. Although the 9-m’
unit was recommended by Sogreah as the appropriate armor size for the design
wave conditions, a lighter Accropode was placed on the structure for testing.
Plan 2 consisted of the same geometry and underlayer, core, and toe berm
material sizes used in Plan 1, but 7.6-m* Accropodes were used as armor layer
(Figure 12, Photos B7 through B9).
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dlsnlaced armor u mts ( Photos B O thro 12) however four umts were
observed to rock in place during or1g1na1 and repeat tests. The stability
coefficient calculated for Plan 2 was 23.1. The toe berm size was identical to
the size used in Plan 1 and was also damaged.

Plan 3

Stability tests were conducted for a dolos armor section as an alternative

armor type to Accropodes. An economlc analysis conducted by SPN indicated
that a breakwater constructed of 9-m* Accropodes was feasibie to

construct. It was felt that the prototype dolos cross section to be modeled
...... 1A sannd ¢~ lana Ariznl 20 Anat 604 #hhn A nnensmnda Aenoa anntinm ¢ la Annnardasead
wouild 11€CU W DU CYudl 111 COUSL LU UIC ALCIUPUUT CIUdD dULLIVIL LU UL Lulbdlucicu
as an option for construction. Dolos size selection was based on the amount
B 3

of concrete required to place 9-m’ Accropodes on the proposed breakwater.
Unlike Accropodes, which are placed in one layer on a 3V:4H slope, dolos are
placed in two layers on a 1V:2H slope. A 3.8-m* (10-ton) dolos cross section

: 3
was calculated to have approximately the same volume of concrete as the 9-m

o 4 T

Accropode section. Many factors are included in an economic analysis;
therefore, the basis of equated concrete volume was not complete but gave a
relative estimate for comparison. Plan 3, shown in Figure 13 and Photos B13

!'_5'1 | 61 m mw

21 n mltw 7™ 31 m iy

00 A milw a ///R\k 93 n ollw

Figure 13. Plan 3, t
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through B15, was designed using the method recommended by the Shore
Protection Manual (1984), and consisted of 453.6- to 1,814.4-kg underlayer
stone and 1.4- to 45.4-kg core stone. The toe berm stone was constructed of
907.2-kg stone.

After the structure was subjected to the conditions in Tab

£ ou1 *s 1 1 1 a1 bk | r’a » ) i ™ 1 1 ~\ 1
OI the units were displaced on tne sea side (Fnotos 5106 and /). ne
ko A Jh Sy I S A1 2. .1 _ AL AAN O o o~ Va1
struCture aia not re 4 damagea conaiuon ana a Ay 01 £¥.0 was Cdicuiaicd.
~rziasias fAerlid zsiatda serasea Aleo s ~ gl 2 salanan Azt A aviemnl Aata nnAd
However, eight units were observed o rock in place during original tests and
ten units rocked in place during repeat tests. This movement of units indicates
that nnite wnnld hraal An tha nratatuna ctrintnira whirh ranld racnlt in failiira
ulat ullivw ywuulu vivan vll uiv PlUl—UL PC SLLULLULLY, WILIIVIL VUULIU 100Ul 111 1allulv
nf the ctmetnre (mantitativa and malitative recnlte indicatad that Plan 2 wag
Vi UilVv DuuuLviLulLl v \{uuxxtxtubxvu CALI \lumlbutlv\/ AWVOUWILW 1liviIvALVvU uiddy 14 1Al o vviao
moderately stable for the design wave conditions conducted at +2.13 m mllw
No stone was displaced from the toe berm
Plan 4

Results from Plan 3 indicated that a heavier dolos unit was required for a
stable cross section. Plan 4 (Figure 14) was constructed of 7.9- and 5.9-m’
(21- and 15.6-ton) dolos placed on the structure to increase stability. The
armor layer was constructed of two sizes because the quantity of model 7.9-m*
dolosse available was limited. The 7.9-m® dolosse were placed on the break-
water sea side, crown, and lee side from the crown to +2.13 m mllw. The
5.9-m’ dolos were placed on the lee side from the toe to +2.13 m mliw. The
underlayer was constructed of 957- to 3828-kg stone; core stone ranged from
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Figure 14. Plan 4, two-dimensional stability tests

18

Chapter 2 Two-Dimensionai Stability Tests



Plan 5

Results from Plans 3 and 4 indicated the optimal dolos size for stability
was heavier than 3.8 m® and lighter than 7.9 m®. Plan 5 (Figure 15,
Photos B21 through B23) consisted of 5.9-m* dolos on the armor layer. The
underiayer, core, and toe berm stone sizes remained the same as Plan 4.

81 m 61 m mitw
e e N e
"?‘ M// s \%\ ~7.7 o nitw

Figure 15, Plan §

¢
¢

No units were displaced from the 5.9-m’ cross section and a K, of 19.5 was
calculated, but five units were observed to rock in place during wave action.
Plan 5 was stable and less units were observed to rock in place than with
Plan 3. However, the increase in stability between the 3.8-m* and 5.9-m*
dolos was not significant. The 907.2-kg toe berm was stable.

Y o TN Ry N
Overtopping

Tha nlang tagtad had ttwa ganmatein channg Tha Aprnerannda cantinang

111C lJl 1> LOSLTU 11dU LWU Y UULLITLLIL dliapod. 11T ALLIUPUUC dULLUVILL,
Plans 1 and 2, were constructed on a 3V:4H slope at a crown elevation of
+6.1 m mllw and a crown width of 6.4 m. Minor overtopping occurred for

. 1 4m M pping occurred for
these sections with random wave heichts <46 Qvertopning increased
these sections with random wave heights H,, < 4.6 m. Overtopping increased
for higher waves, and was moderate for 7-m regular waves. The waves
approached depth-limited breaking at this height and overtopping did not

increase significantly for 7.6- and 8.2-m wave heights.

Plans 3, 4, and 5 were constructed of two layers of dolosse on a 1V:2H
slope at a +6.1-m mllw crown elevation and a 6.1-m width. No overtopping
was observed for waves up to 6.4 m. Overtopping was minor to moderate for
17-sec, 7-m waves and higher. Although the Accropode and dolos sections
were of the same elevation and approximate width, the flatter slope and two
layers of dolosse allowed more energy to dissipate, and less overtopping was
observed for Plans 3 through 5.
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Summary of Two-Dimensional Stability Tests

=
o o
pol
o~
(€}
"=
h—t
[¢]
&
(4]
j L
w
[l
(43
o
[
[¢]
(=%
(4]
=
(4]
3
o=t
o
[«%

AAAAAAA

-
&
4
o
=%
&
]
i3

ity tests sh 1 no unit lisplaced for the ¢ Accropode and
7.9-m? dolos sections, Plans 1 and 4, respectively. The cross sections were
considered conservatively designed. No units were displaced for the 7.6-m’
Accropode section (Plan 2); however, four units rocked in place at the crown
when subjected to 20-sec, 7.6-m waves. The 3.8-m* and 5.9-m® dolos sections,
Plans 3 and 5, respectively, were found to be marginally stable. No significant
increase in stability was gained by the increase in armor unit weight from

3.8 m®to 5.9 m®.
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The toe stone used in Plans 1 and 2, 50 to 500 kg, was not stable and was
displaced for the conditions tested. A 907.2-kg stone was used in Plans 3
through 5 and was stable.

Table 4
Summary Of 2-D Stability Tests (Seaward Section)
Armor Size
Pian Type {m®) K, Observation

1 Accropode 9.0 19.0 Conservative
2 Accrapode 7.6 23.1 Stable
3 Dolos 3.8 29.8 Moderateiy stabie
4 Dolos 79 14.4 Conservative
5 Dolos 5.9 19.5 Stable
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3 Three-Dimensional
Stability Tests

Armor units placed on the ends of breakwaters are often vulnerable to
waves which overtop and diffract around the structure because the units are
subjected to wave forces from the opposing direction of a two-dimensional
situation. A heavier unit is often required for breakwater stability on the
roundhead of the structure. To determine the stability of the entire structure,
in particular the roundheads, three-dimensional tests were conducted for the
proposed Noyo breakwater.

The Model

Design of model

Three-dimensional stability tests were conducted at a geometrically
undistorted linear scale of 1:50, model to prototype. Scale was based on size
availability of model armor units and the capabilities of the available wave
generator to produce required wave heights at the modeled water depth. Time
relations were scaled according to Froude Model Law (Stevens et al. 1942),
and model-to-prototype relations were derived in terms of / and ¢ shown in
Table 5.

Table 5
Model-Prototype Scale Relations (1:50 scale)

Scale Relations
Characteristic Dimension Model:Prototype
Length / I= 1:50
Area ? a = 1:2500
Volume N v, = 1:125000
Time ne t= 1.7.07

Chapter 3 Three-Dimensional Stability Tests
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The armor layer of the original plan for three-dimensional tests consisted of
14- and 9-m® (37- and 24-ton) Accropodes, but the specific weights of water
and construction materials differed between the model and prototype. The
transference equation of Hudson (1975), Equation 1, was used to determine the
model scale that most closely represented prototype weights for the model
Accropodes available at WES and Sogreah. A 1:50 scale and model weights
of 0.26 kg and 0.16 kg used in Equation 1 yielded prototype weights of 14 m*
and 8.3 m® (22 tons), respectively. The two-dimensional stability tests showed
a 7.6-m’ Accropode was stable for the conditions tested, and on this basis, it
was felt the 8.3-m* unit would be analogous to a 9-m* unit for three-dimen-
sional testing. Core-Loc armor units representing prototype sizes of 11.9 m*
and 7 m*® were also used during three-dimensional testing. The model armor
units used for three-dimensional stability tests are shown in Figure 16.

]

MODEL ARMOR UNITS
NOYO HARBOR, CA
3-D STABILITY TESTS
1:50 SCALE

Eirnnira 18 ANAAdal armar ninite 11ead in thran_Aimancinnal etahilihy tacte

riguic 10, GGG anmiOn uriins usStU i WirST-Uniiciisiliial Stavinty SoLs,
prototype weights from left; 8.3-m® Accropode, 7.0-m® Core-Loc,
11.9-m® Core-Loc, and 14.0-m*® Accropode

Scale effects of viscous forces associated with flow through underlayers and
core of the original structure design, shown in plan view in Figure 17, were
addressed using the method of Keulegan (1973) to assure that flow through the
structure was turbulent. Prototype and model armor layer W,, first and second
underlayers W, and W;, core W,, and toe berm W,, materials used for the
three-dimensional stability tests of the proposed breakwater are listed in
Table 6. Cross sections of the Profiles 1-1, 1°-1’, 2’-2’, and 2-2 denoted in
Figure 17 are shown in Figures 18, 19, 20, and 21, respectively.
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Tabie 6
Prototype and Modei Materiai Sizes (Originai Design)
Prototype

Profile 1-1 Profile 1’-1’ Profile 2’-2’ Profile 2-2
W, 14.0 14.0 8.3 8.3
m3
W, 2200 to 4400 2200 to 4400 1500 to 3000 1500 to 3000
kg
W, 1500 to 3000 1500 to 3000 - -
kg
A 1 to 500 1 to 500 110 500 1 tc 500
kg
W, 10 to 500 10 to 500 10 to 500 10 to 500
kg

Model

Profile 1-1 Profile 1’-1’ Profile 2'-2’ Profile 2-2
W, 0.26 0.26 0.16 0.16
W, 0.018 to0 0.029 0.018 to 0.029 0.011 to 0.018 0.011 0 0.018
kg
W, 0.011 t0 0.018 0.011 to 0.018 - -
kg
W, 0.005 to 0.011 0.005 to 0.011 0.005 to 0.011 0.005 to 0.011
kg
W, 0.005 to 0.011 0.005 to 0.011 0.005 to 0.011 0.005 to 0.011

Test facilities and equipment

Tests were conducted in a 36.6-m-long, 24.4-m-wide, 1.2-m-deep wave
basin. A photograph of the three-dimensional model, gravel absorber, wave
gages, and wave generator is shown in Figure 22. The model was constructed
and molded of concrete to represent approximately 425 by 425 m of bathy-
metry in the vicinity of the proposed breakwater location. Contours were
moided to -15 m miiw, and a 1 on 5 transition siope was molded from the
-15-m contour to the model floor elevation of -24.4 m milw. Gravel absorber

41, 1. -
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Figure 17. Original Noyo breakwater plan
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Figure 19. Profile 1'-1’ of original breakwater plan
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Figure 22. Photograph of three-dimensional stability model
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signals to drive the board were generated to simulate a TMA shallow-water
spectrum (Hughes 1984) for the design wave periods.

Results from wave hindcast studies (Corson et al. 1986) indicated the most
severe wave conditions approached the harbor from the west-northwest;
therefore, the west-northwest direction was selected as the test direction. Prior
to construction of the breakwater, the basin was calibrated for the design
periods from the west-northwest. The selected water depth for all tests was
+2.13 m mllw for design wave periods of 13, 17, and 20 sec. Design wave
heights were based on the maximum incident waves which reached the struc-
ture.

Water surface elevations were recorded by single wire capacitance-type
gages, sampled at 20 Hz. Six gages were used for calibration in two arrays of
three gages each to allow calculation of incident and reflected wave heights by
Goda and Suzuki (1976). Array 1 was positioned above the model floor
(-24.4 m mllw, prototype) 4.5 m from the generator, which was midway
between the generator and model contours. Array 2 was positioned so that the
middle gage of the array was directly above the center of the north roundhead
of the breakwater. Array 2 was removed after calibration was completed and,
during stability tests, wave data were collected at Array 1 only to verify that
proper wave conditions were generated. Data obtained from the arrays were
analyzed using the TSA computer program of Long and Ward (1987). Opera-
tions performed for the three-dimensional stability tests were mean
down-crossing analysis to obtain significant, maximum, and average wave
heights, significant and average wave periods, and mean water levels at each
gage; and unidirectional spectral density incident/reflection analysis to deter-
mine the incident and reflected parameters at each array.

Design wave heights at the proposed structure were selected from
Figures 23 through 25, which show results of three-dimensional calibration of
the facility for peak periods of 13, 17, and 20 sec, respectively. Offshore
wave height at the wave generator depth of 24 m (H,,),, is plotted versus
(H,..)s» (H),; and (H,,), at the north roundhead, where (H,,,,), = maximum
wave height at north roundhead, three-dimensional tests, (H,), = significant
wave height at north roundhead, three-dimensional tests, and (H,,,), = zero-
moment wave height at north roundhead, three-dimensional tests. A
depth-limited breaking condition was reached at the structure location for
non-breaking conditions at the generator for all periods. Storm I design
conditions for stability tests are shown in Table 7. The total duration of
Storm I was approximately 30 hr prototype. Some breakwater plans were
subjected to additional waves without rebuilding the structure. Storm IA
conditions consisted of the ten Storm I waves beginning with the 7, = 13 sec,
(H,,),; = 5.8 m condition and continuing to 7, = 20 sec and (H,,,), = 8.1 m in
Table 7. Storm IB consisted of three Storm I waves which began with
T, =17 sec, (H,,), = 7.2 m and concluded with T, = 20 sec, (H,,), = 8.1 m.
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Figure 23. Wave height at north roundhead, 13-sec waves
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Figure 24. Wave height at north roundhead, 17-sec waves
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Figure 25. Wave height at north roundhead, 20-sec waves

Photographs were taken before testing was initiated without water in the
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mllw and the structure was exposed to low-level waves, T, = 13 s, (H,,,); =
3.0 m, wave condition 1 in Table 7. The low-level series allowed settling and
nesting of the newly constructed section which would occur under typical daily
wave conditions prior to being exposed to a design-level storm. Th

remainder of the Storm I wave conditions of Table 7 were generated upon
completion of the low-level waves. Response of the structure was recorded
during and after each wave condition. Photographs were also taken of the
north and south roundheads, and the lee side and sea side of the structure
while the basin was flooded after each series of waves of constant height was
completed. A detailed inspection of the structure was also performed during
this time, and effects of the waves on individual units, toe buttress stone, and
the general condition of the structure were recorded. The basin was drained,
and after-test photographs were taken after all waves of a storm series were
generated. The same procedure was followed if the plan was subjected to
additional storm conditions. Before and after photographs are located in
Appendix C.
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placed according to a three-dimensional mesh, which is a function of

x

ouis Sanchez of Sogreah. The units were

el construction
Accropode size. This special placement of units was performed on all subse-

¥ Included in Storm IA conditions.
quent Accropode plans.
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Reporting model observations

Visual inspections were made during and after wave action on the structure.
Because Accropodes are placed in one layer, no displacement of any unit was
desired. In essence, the structure either failed or was stable.

Qualitative results were taken for overtopping, and the wave period and
height and category of overtopping (minor, moderate, or major) were noted for
each wave condition. :

Resuits

Three-dimensional stability tests were conducted for 17 plans at a model
scale of 1:50. The plans consisted of two breakwater configurations, original
and modified. Eight toe protection plans were used with the original break-
water and nine toe plans were used with the modified structure. Accropodes
were used for all original breakwater plans and both Accropodes and Core-
Locs were used during tests with the modified breakwater plans. All wave
heights referred to in this section are (H,,),. A 3V:4H slope was used on all
original breakwater plans, and a 2V:3H slope was used on modified breakwater
pians.

=)
=
j=
=
=
o]
o
o
e
=
Cu
=
=
o
=)
=
172

through 17, which were subjected to multiple series of Storm IA and/or

Storm IB waves. Wave data were collected at the basin floor in -24.4 m mllw
water immediately in front of the wave generator to assure the appropriate
waves were generated. Three-dimensional harbor tests at a 1:75 scale were
simultaneously being conducted by Bottin (1994) to determine the effective-
ness of the structure on wave height reduction. Design wave conditions for
the 1:75 scale harbor study were lower than the stability test design conditions
because it was agreed by SPN and local representatives of Noyo Harbor that
fishing vessels would not navigate for offshore wave heights in excess of

4.3 m. However, in the present study it was necessary to determine the
stability of the structure for the highest wave conditions that occur at the site
ure would always be exposed to these conditions. Wave data
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Plan 1

Plan 1, the proposed plan, consisted of 14-m*® Accropodes on the north
roundhead and 8.3-m? units on the south roundhead (Figure 17) and was
exposed to Storm I conditions. The armor layer became loose and Accropodes
were displaced at the toe during tests with 20-s, 6.4-m waves. This period and
height were repeated to determine if further damage would occur and if the
limiting wave condition had been reached. Damage did not increase when the
condition was repeated, but the plan failed after the structure was subjected to
the higher waves in the test series. Armor units were observed to slip on the
structure slope, which indicated the mechanism of failure to be an unstable toe
(Photos C1 through C4).

Plan 2

Results from Plan 1 indicated failure was due to toe instability. Toe
stability in part is a function of the breakwater slope. Because Accropodes are
placed on a 3V:4H slope, which is relatively steep, the patent holder Sogreah
was consulted for their recommendation for a solution. Sogreah gave two
options for Accropode toe stability: (a) place the first row of units in a trench,
and (b) add a toe buttress in front of the units. Sogreah stated using a trench
was the best method for assuring toe stability, but placement of a toe buttress
was the more desirable and less expensive option for SPN. Plan 2 was
constructed and tested using 3,350 kg (3.7 tons) buttressing stone around the
entire structure (Photos C5 through C8) to reinforce the first row of
Accropodes and provide stability to the toe. Stone was placed using the
standard toe buttress configuration (two layers thick and minimum three stones
wide) on the upper layer (Markle 1989). The toe buttress width was approxi-
mately 6.1 m prototype at the base.

The toe was observed to be more stable for Plan 2 after Storm I waves with
inclusion of the buttress stone. However, the first layer of 14-m> Accropodes
was displaced on the leeward and seaward sides of the breakwater and the
structure failed in these areas (Photos C9 through C11). The buttressing stone
appeared to provide sufficient stability at the toe of the 8.3-m? units
(Photo C12).

Plan 3

To improve stability at the toe, 5,080-kg (5.6-ton) stone was placed two
layers high and three stones wide for reinforcement at the toe of the 14-m’
units for Plan 3 (Photos C13 through C16). Results of Plan 2 indicated
3,350-kg buttress stone provided adequate toe protection in front of the 8.3-m?
units. The toe of the 8.3-m® units remained stable after Storm I waves were
generated, but the 5,080-kg stone was displaced, and Accropodes were dis-
placed near the toe on the seaward and leeward sides near the north roundhead
(Photos C17 through C20). The 5,080-kg stone buttress extended higher in the
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water column than the lighter stone, and was subjected to more of the wave
energy, which may have caused the stone to be displaced.

Plan 4

Results of Plan 3 indicated that use of stone larger than 3,350 kg placed
two layers high and 6.1 m wide would not secure the toe. Therefore, a wider
toe buttress was placed for Plan 4. The plan consisted of 3,350-kg buttressing
stone placed around the entire structure, but unlike Plan 2, the buttress width
was extended from 6.1 m to 24.4 m on the lee side in the area of toe
instability and to 18.3 m on the sea side in front of the 14-m’ units (Photos
C21 through C23). The buttress width fronting the 8.3-m* Accropodes was
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occurred on the lee side of the north roundhead for the 20-sec, 8.1-m wave
condition. Toe instability was located in deeper water on the leeward side than
observed in previous plans and at the point where the buttress width began to
narrow from 24.4 m to 6.1 m. The unstable toe caused units to slide on the
breakwater, and a hole developed in the armor layer, shown in Photos C25
through C28.

The damaged structure was subjected to Storm IA waves. Accropodes were
observed to move in the vicinity of the hole and a few were displaced off the
structure, but further damage was not significant for the 5.8- to 7-m heights.
However, the 20-sec, 8.1-m wave condition removed all Accropodes on the
north roundhead above -3 m mllw (Photos C29 through C32). Damage to the
breakwater would probably have been more severe, but a cross-sectional
template in the model breakwater prevented additional displacement along the
trunk. Resuits of the tests indicated Pian 4 may survive one major storm, but
a second storm would destroy the structt
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storm would destroy structure if no repairs were performed
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The wider toe berm used in Plan 4 provided additional protection to the toe
buttress material could be placed in these areas to provide stability for one
storm, the breakwater was reconstructed and 3,350-kg buttress stone was
placed around the structure in the same manner as Plan 4, but reduced to
18.3 m wide on the lee side and 12.2 m wide on the sea side for Plan 5
(Photos C33 through C36). After tests with Storm I and IA waves, the
narrower buttress width was displaced on both the sea side and lee side of the
structure and was not sufficient to stabilize the toe. (Photos C37 through
C40).
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Plan 6

Plan 6 consisted of the proposed breakwater section with a metal strip
placed around the entire structure in front of the first row of Accropodes to
stabilize the toe (Photos C41 through C44). One 14-m*® Accropode was dis-
placed after Storm I waves, but the structure was in good condition and was
not damaged (Photos C45 through C48). The structure was subjected to the
additional waves of Storm IA, and no further damage was observed to the
breakwater (Photos C49 through C52). Results of Plan 6 showed that the
14- and 8.3-m* Accropodes placed on the structure would be stable for Storm 1
and TA wave conditions if the toe was stabilized. Similar results would be
expected in the prototype if the first row of Accropodes were placed in a
trench or were protected by driven piles.

Plan 7

Plan 7 was constructed to determine if a stable toe could be achieved with-
out construction of a trench or use of piles. Buttress stone was placed around
the entire structure using 3,350-kg stone placed two layers high and 24.4 m
wide on the lee side of the north roundhead, which was identical to Plan 4, but
the buttress tapered to 18.3 m, rather than 6.1 m, at the end of the north
roundhead (Photos C53 and C54). The toe buttress was also placed 18.3 m
wide on the sea side fronting the 14-m> Accropodes (Photo C55). The toe
buttress was placed 6.1 m wide in front of the 8.3-m* Accropodes (Photo C56).
The structure was moderately stable for waves up to 7.0 m; however, a hole
began to scour within the buttress on the lee side of the breakwater. The scour
hole increased in size during 20-sec, 8.1-m waves (Photos C57 and C58), and
movement of 14-m® units was observed. Damage to the breakwater was
limited to the lee side of the north roundhead in the vicinity of scour
(Photos C59 and C60). The damaged structure was subjected to Storm IA
waves which caused the structure to fail on the lee side of the north roundhead
(Photos C61 through C64).

Plan 8

Results of Plan 7 showed the toe buttress remained in place during Storm I
and IA conditions, but the 3,350-kg stone scoured within the buttress. Plan 8
was constructed using 3,350-kg buttress stone at the same dimensions of
Plan 7, except 5,080-kg stone was placed two layers high in the zone in which
scour occurred during Plan 7 tests. To expedite the tests, the plan was sub-
jected to Storm IA tests only. Only one unit was displaced on the leeside of
the north roundhead. However, Photos C65 through C68 show that the
5,080-kg stone was not of sufficient weight to prevent scour in the buttress and
did not provide necessary toe protection for the structure.

Chapter 3 Three-Dimensional Stability Tests
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Breakwater modification tests

With the exception of the lee side of the north roundhead, the toe buttress
plans stabilized the toe for the conditions tested. It was observed during tests
of Plans 1 through 8 that waves appeared to shoal as they diffracted around the
north roundhead. It was felt that the roundhead shape and surrounding
bathymetry concentrated breaking wave energy in the area of toe instability.
To determine if a different breakwater shape would reduce energy at the toe,
wave height measurements were made near the location of toe instability for
the original plan for heights of 6.4 m and higher for the design wave periods.
Wave heights of the original plan (crest width of 29 m) were compared to two
breakwater plans with reduced crown widths of 15.2 m and 9.1 m, shown in
Figures 26 through 28. Little difference is observed between the original plan
and the 15.2-m crown width plan. However, wave heights in the vicinity of
toe instability are 10 to 15 percent lower if a 9.1-m crown width is used.
Stability tests were continued with a 9.1-m-wide crown at the north roundhead,
shown in Figure 29. The crown width on the remainder of the structure was
6.1 m, including the south roundhead. Cross sections of Profiles 1-1, 1’-1’,
2'-2’, and 2-2 of the modified breakwater are shown in Figures 30 through
33. Prototype and model core and first underlayer material sizes of the origi-
nal plan were used for the modified breakwater plans. The second underlayer
size used in Profiles 1-1 and 1’-1’ of the original plan was eliminated and not
used in the modified plans.
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Figure 26. Comparison of 13-sec wave heights at leeside toe to crown width
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Plan 9

Plan 9 was constructed with 14-m*® Accropodes placed on the north roundhead
and 8.3-m’ Accropodes on the south roundhead. The effect of the reduced
roundhead on required buttress width for toe stability was not known. There-
fore, a 6.1-m-wide buttress of 3,350-kg stone was placed around the entire
structure (Photos C69 through C72). Despite reduction in energy at the leeside
toe of the north roundhead, 20 units were displaced after being subjected to
Storm I wave conditions (Photos C73 through C76). Accropodes were
displaced at the toe, which caused most of the damage; however, it was
observed that some units were displaced from the crown, which was not a
resuit of toe instability.
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Figure 27. Comparison of 17-sec wave heights at leeside toe to crown width

Plan 10

Based on results of Plan 9, a wider buttress of 3,350-kg stone was neces-

sary to ensure toe stability on the lee and sea sides of the breakwater. The
buttress was extended to 30.5 m on the lee side and to 18.3 m on the sea side
in front of the 14-m’> Accropodes (Photos C77 through C80). The structure
lost five Accropodes after being subjected to Storm IA waves (Photos C81
through C84), and three additional units were lost after Storm IA waves were
repeated without rebuilding (Photos C85 through C88). The toe on the lee
side of the north roundhead was not displaced after the tests, and the structure
was considered stable (Photo C86).
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Figure 32. Profile 2’-2” of modified breakwater plan
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Figure 33. Profile 2-2 of modified breakwater plan

Plan 11

Plan 11 incorporated 11.9-m* Core-Loc armor units on the north roundhead,
and 7.0-m® Core-Locs on the south roundhead (Photos C89 through C92). The
toe buttress was built of 3,350-kg stone and was 6.1-m wide in front of the
south roundhead units and 18.3-m wide in front of the north roundhead units
on the sea side. Results of Plan 10 indicated the 30.5-m-wide buttress was
stable on the lee side of the north roundhead; therefore, the buttress was
narrowed to a width of 24.4 m. Storm IA waves were generated and repeated
without rebuilding the structure (Photos C93 through C96 and C97 through
C100, respectively). Two Core-Locs were displaced after the tests and the
north roundhead displayed general looseness, but the structure was determined
to be stable for the test conditions.

Plan 12

The breakwater was rebuilt with the Core-Locs used in Plan 11. The toe
buttress was placed at the same width using the same stone as in Plan 11;
however, a 12.2-m-wide buttress was constructed on the lee side of the north
roundhead (Photos C101 through C104). The narrower leeside buttress was
displaced during Storm IA tests and two 11.9-m* Core-Locs were displaced
(Photos C105 through C108). Six additional 11.9-m? units were displaced
after Storm IA waves were repeated and Plan 12 was considered moderately
stable (Photos C109 through C112).

Plan 13

Plan 13 was constructed of Core-Locs with a toe buttress composed of
3,350-kg stone, 6.1 m wide in front of the 7.0-m? units and 18.3 m wide at the
base of the 11.9-m* units (Photos C113 through C116). The structure was
subjected to Storm IA waves and one unit was displaced off the north round-
head on the lee side (Photos C117 through C120). Storm IA waves were
generated without rebuilding the structure, and two additional units were
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displaced on the sea side of the north roundhead (Photos C121 through C124).
The toe buttress was in good condition and the structure was stable for the
conditions tested.

To determine if damage to the structure would progress with additional
wave energy, Plan 13 was subjected to three series of Storm IB waves without

rebui g the breakwater. After a total of five successive storms ([WO series
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side of the structure and on the north and south roundhe Most of the
Core-Loc displacement was directly caused by toe ure. The results showed

Plan 14

Plan 14 was constructed using 14- and 8.3-m? Accropodes with the same
buttress configuration used in Plan 13 (Photos C129 through C132). The
Accropode structure was subjected to five series of Storm IB waves. Results
of Plan 14 tests were similar to Plan 13. The toe buttress was displaced on the
sea side near the transition of armor units, the south roundhead, and on the lee

~1An ~ N

side of the north roundhead (Photos C133 tnroug C136). 1nirty one 14-m®
& “‘ : - a2
ts ¢ . X , 1.

<
[¢']
=]
[
[ otd
|7
ge
E..
C
a
Cu
ud
C)
G)
7]
[
et

Plan 15 was constructed with 19.9-m* Accropodes on the north roundhead
and 8.3-m’ Accropodes on the south roundhead. The buttress contained
3,350-kg stone and the width was increased to 15.2 m around the south
roundhead. The buttress was placed 30.5 m wide at the base of the seaside
8.3-m* units near the transition to the heavier Accropodes. The buttress
tapered to 18.3 m in front of the 19.9-m> units. The buttress width was main-
tained at 6.1 m in front of the leeside, 8.3-m* Accropodes, but the buttress was
widened to 30.5 m at the base of the larger, leeside units. Figure 34 shows a
plan view of the structure and buttress used for Plan 15. The breakwater lost
one 8.3-m’ and seven 19.9-m* Accropodes after five successive series of
Storm IB waves, but was stable (Photos C137 through C140). It was deter-
mined that the wider buttress and larger units used on the north roundhead
used for Pian 15 were necessary to provide a stabie breakwater design for the
wave conditions tested.
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Figure 34. Toe buttress used in Plans 15, 16, and 17

Plan 16

The breakwater configuration of Plan 15 was determined to be stable for
the design wave conditions. However, wave hindcast information showed that
deepwater waves higher than 6.7 m for periods greater than 18.7 sec did not
occur over a 20-year period of measurement (Corson et. al 1986). It was felt
the design conditions were conservative; therefore, the wave conditions were
modified to reflect this information. Storm IB waves were generated for five
consecutive series, but the 20-sec, 8.1-m wave was omitted from the second,
third, and fourth series. Although the high wave condition was rare, it has
been observed offshore subsequent to Corson’s period of record, and was
included in the first and fifth series. Plan 16 was constructed using the same
buttress configuration as Plan 15 and with 8.3-m® Accropodes placed on the
south roundhead, but 14.0-m® Accropodes were placed on the north roundhead
(Photos C141 through C144). The plan was stable after five successive
storms; three 14.0-m’ units and one 8.3-m? unit were displaced (Photos C145
through C148). The toe buttress was aiso found to be stable.

Plan 17
The breakwater was rebuilt using 11.9- and 7.0-m> Core-Locs on the north

and south roundheads, respectively, and the same buttress configuration used in
Plans 15 and 16 (Photos C149 through C152). Plan 17 was subjected to the

Chapter 3 Three-Dimensional Stability Tests



modified Storm IB wave conditions of Plan 16 and was stable for the design
waves; two 11.9-m’ and two 7.0-m® were displaced (Photos C153 through
C156).

The structure was rebuilt and Plan 17 was tested to determine if the toe was
stable for wave conditions at a lower water level. The breakwater was
subjected to five successive modified Storm IB waves generated at a
+0-m milw level. The structure and toe buttress were stable; one 11.9-m? unit

o s DL Yok IV Lo IS TN Falk W\

was displaced during the test (Photos C157 through C160).

Three-dimensional stability tests are summarized in Table 8. The proposed
Noyo breakwater was subjected to depth-limited wave conditions generated for
three design periods from the west-northwest offshore wave direction. Observa-
tions from the tests indicated that the major concern for a stable structure was
a stable toe. Two breakwater shapes were tested for the proposed breakwater.
l:1gnt toe connguratlons were testea w11:n tne or1g1na1 plan and nme toe

. . N . R R, el PR . a acta Trre ~
original plan were conducted with Accropode armor ur ts. The tests with the
mmn A A ] hhonnlrsrntac Anmaiota ~ ~ novnm~adas an A A~ 1Inato
modified breakwater consisted of both Accropodes and Core-Loc units

sign to survive Storm I and TA wave

e §

nditions. Several Accropode and Core-Loc plans were found to be stable for
two storm series which included the 20-sec, 8.1-m wave at the breakwater
using a toe buttress of 3,350-kg stone with the modified breakwater plan.
However, only Plan 15, consisting of 19.9-m* Accropodes placed on the north
roundhead, was stable for five series of Storm IB waves. A heavier Core-Loc
model unit was not available at the time of testing, but based on test observa-
tions, a larger Core-Loc used with the toe buttress configuration should also
provide adequate stability for all wave conditions. Similar results were
obtained between the 14-m> Accropode and 11.9-m* Core-Loc; therefore, it
was expected that a 16.9-m* Core-Loc placed on the north roundhead would be
required to provide a stable breakwater for five series of Storm IB waves.
Plans 16 and 17, which were constructed with 14- and 8.3- m“ Accropooes and

1.9- and 7.0-m’ \,ore—Locs, especti : ries of
t he 20-sec,
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Table 8
Summary of 3-D Stability Tests
North Roundhead South Roundhead
Armor Armor Buttress Armor Buttress Units
Plan Storm Cycles Type (m%) (kg) (m%) (kg) Displaced’
1 | 1 Accropode 14.0 - 8.3 - 23
2 | 1 Accropode 14.0 3350 8.3 3350 7
3 | 1 Accropode 14.0 5080 8.3 3350 51
| 1
4 1A 1 Accropode 14.0 3350 8.3 3350 >100
| 1
5 1A 1 Accropode 14.0 3350 8.3 3350 8
| 1
6 1A 1 Accropode 14.0 2 8.3 2 1
| 1
7 1A 1 Accropode 14.0 3350 8.3 3350 42
8 1A 1 Accropode 14.0 3350° 8.3 3350 1
9 | 1 Accropode 14.0 3350 8.3 3350 20
10 1A 2 Accropode 14.0 3350 8.3 3350 8
11 1A 2 Core-Loc 11.9 3350 7.0 3350 2
12 1A 2 Core-Loc 11.9 3350 7.0 3350 8
1A 2
13 1B 3 Core-Loc 11.9 3350 7.0 3350 35
14 B 5 Accropode 14.0 3350 8.3 3350 41
15 B 5 Accropode 19.9 3350 8.3 3350 8
16 B* 5 Accropode 14.0 3350 8.3 3350 4
17 B* 5 Core-Loc 11.9 3350 7.0 3350 4
' Does not include units displaced on structure.
2 Toe trench installed.
® Included 5,080-kg stone within buttress.
4 20-sec, 8.1-m wave condition omitted from three of five series.
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1€ purpose n tests was to develop a breakwater cross
section at a small scale that renroduced transmission of the nrooosed prototype
breakwater. The small-scale cross section developed would be used during
tests of the proposed Noyo breakwater three-dimensional harbor model tests
conducted by Bottin (1994). Ideally, model transmission tests would be com-
pared to field data, but because the breakwater is proposed and does not exist
in the prototype, wave data obtained at the small scale were compared to data

collected during two-dimensional stability tests at a 1:43 scale.

The purpose of the transmis

Design of modei

¢ SO tacta sirmra s atad b o 1 TE o A ¥ o Ta <Ll
Transmission tests were conducted at a 1:75 NAaistonea scaic, wiicilt wds
tha anrma anala 11and i0m tha NTAacna thean Al ancinna 1 hach o anAdal Malla O
LT D 1T dLaAIT udCU 11 UIC INUYU ulucc-ul lllcllblul dal 11dluul 1110Ucl. 14vlc 7
chnawe madal_ta_nratatuna ralatinnge dafinad in tarmao nf 71 and ¢ at o 178 grala
QUIV WD 11IUULLITLY 1 ULUL PC 101AUULId UCLIIIVU $i] WCLILIDd UL f allu L al a 1.7J dsvaiv
romde madal law (Stavance et al 1042 wac nead ta cerala time ralationg
L AVUMUY 111VUUVL 14YY \ULVV wiLD WL AL, l./_rhl WAoo Uovu LU DVdAdlv LUlllv lviadauniviin

Table 9
Model-Prototype Scale Relations (1:75 scale)
Scaie Reiations
Characteristic Dimension Model:Prototyne
Length / I= 175
Area 12 a, = 1:5625
/nlima 3 v — 1-49241 Q78
Volume | v, = 1421875
Time s t= 187
AT~ A nnsasmndn qwesnis 331 x3x700 asracslalala a4 see A2l bnnaqeantaas i s 1.7&
NO ACCropodae armor unit was avaiiaoie to moael transmission at a 1:75
arnala Nanranicn tha tacte inurnaluirad trancmiccinn Anlyy and nat ctahilityr ctAna
sLaiv DOLAUdUT LU LODL 11IVULIVOU L IDIILIDS1IULL Uluy allu UL dLAauvlllily, d>LULIT
wac 1ncad in tha armnr lavar far tha tacte
YWAaAo UuouLvu 111 Ulv Allilivil 1ayuvl 1uVUL ulv tvoLud.
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Tests were conducted in the same tank used in the two-dimensional stability
tests (Figure 4) and the facilities were operated for the transmission study in
the same manner used in the stability tests. The transmission tests, in essence,
modeled the two-dimensional stability tests; therefore, it was necessary to place
the gages in the same scaled prototype locations used in the two-dimensional
stability tests. Data were analyzed using the TSA computer program (Long
and Ward 1987) to determine H, H,, H,,,, H,,, T, and T, mean water levels at .
each gage, where H = wave height and H, = significant wave height.
Incident/reflected spectra were analyzed using the method of Goda and Suzuki
(1976). The cross section was placed on the horizontal section of the siope,

61 m prototype from the 1V:20H slope transition. Transmission was

calculated using data obtained from two three-gage arrays placea 1055 m

prototype seaward and shoreward of the structure, respectively.

Test procedures
Design conditions were based on analyzed data from the two-dimensional
ity tests. Measured transmitted wave height H, from the two-dimensional

1S a unctio of 1n01dent wave height H; in Flszures 35
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comparison cr1ter1a were estabhshed The followmg results and observatlons
were considered to develop transmission test criteria:
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Figure 35. Two-dimensional stability wave transmission, 13-sec waves
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Figure 37. Two-dimensional stability wave transmission, 20-sec waves

a. Calibration of the facility showed little difference between wave heights
offshore and at the toe of the structure for wave heights less than 6 m
(Figures 5 to 10).
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b. Observations of the stability tests showed wave overtopping did not
occur or was minor for heights less than 6 m.

c. Tests will be conducted in the three-dimensional harbor model with
regular waves only.

d. SPN selected Plan 1 as the design cross section from the stability test
results.

For the above reasons, comparison of small-scale and large-scale wave
transmission was limited to regular waves with heights less than 6 m from
Plan 1 tests. Water surface elevations from Array 1, positioned 61 m shore-
ward of the structure, were used as the incident wave height for the purpose of
comparing transmission and computing transmission coefficients.

Regular and random wave heights were generated for periods of 13, 17, and
20 sec; however, only regular waves were used for comparison to Plan 1
transmission values. Incident wave heights were estimated from the calibration
curves obtained in the two-dimensional stability study for regular waves
(Figures 8 to 10). Some plans were subjected to only a limited number of
conditions if it was evident the structure would not duplicate transmission from
the 1:43.3-scale cross section.

Photographs were taken prior to conducting transmission tests. Because
stability was not a direct concern for transmission, use of low-level waves to
settle and nest the units was not necessary. Prototype test duration was
130 min for random waves, and 26 min for regular waves. All wave con-
ditions were conducted for one cycle. Overtopping and general structural
stability were noted during and between test cycles, and at the completion of
the test series. Photographs were taken of the structure with the tank drained
after testing was completed.

Model construction

The cross section which was determined to have the same transmission
characteristics of the large-scale cross section would be used as the design
section in the three-dimensional harbor model of Noyo. It was important to
construct each cross section in the manner that would be used to construct the
breakwater for the three-dimensional harbor study. The core and underlayer of
the transmission test sections were placed by bucket or shovel, smoothed to
grade, and compacted with hand trowels. The armor layer was placed on the
structure by bucket or shovel and smoothed to grade without compaction. The
two-dimensional stability plans consisted of an underlayer and core materials
of equal size. Therefore, all transmission plans were constructed of an armor
layer, geometrically scaled to the proper thickness of the prototype, placed
over a core.

Chapter 4 Two-Dimensional Transmission Tests



Method of calculating transmission

Transmission is dependent, in part, on incident wave period. Small- and
large-scale comparisons of transmission were therefore examined for each
period tested in the two-dimensional stability tests. Both transmitted wave
heights and the transmission coefficient K, of the small- and large-scale plans
were compared. The transmission coefficient is defined as

Iy
t
i

K = _ A3)
! H

Transmission was measured for nine cross sections, which were all buiit to
the same physical dimensions as Plan i. Each cross section consisted of an
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vertically in the cross section for some plans to compensate for these differ-
ences. A plan was considered acceptable for a particular period if small-scale
values of K, were within 10 percent of the large-scale K, values. Results of

each plan are described below.

Plan A

Plan A (Figure 38) consisted of 29- to 44-g armor stone and 0.7- to 2.0-g
underlayer and core stone. The armor stone size was selected by directly
scaling a 9-m® stone to a 1:75 scale. The underlayer and core sizes were
determined by reducing the prototype stone to a 1:75 scale and increasing the
size 50 percent to roughly account for scale effects. Transmitted versus
incident wave height is shown in Figures 39, 40, and 41 for 13-, 17-, and

20-sec waves, respectively. Small-scale and Plan 1 transmission coefficients
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section lowered the crest elevation and permitted wave energy to overtop the
breakwater
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Plan B

The armor stone of Plan A was replaced with heavier stone, 44 to 86 g, and
the core size remained the same for Plan B (Figure 38). It was desired to
increase transmission for the 13-sec waves and decrease transmission for 17-
and 20-sec waves. The larger armor stone was more porous and would allow
more energy to transmit through the breakwater, but it was also more stable
and would maintain the design crest elevation and reduce overtopping. Figures
39, 41, and 42 show that the more stable armor stone reduced transmission for
the 20-sec waves by 8 percent to +25 percent, but transmission also decreased
for 13-sec waves to -28 percent of Plan 1 values of K,. Use of the heavier
stone increased transmission for the 17-sec waves to +30 percent of Plan 1
values (Figures 40 and 42).

8.1 cm mlw

45 cm miw

284 cm_miw M\
0.06_cm_miiw // 7.0 crmi 6 cm
LY 5=
~ £/ cm
/—// We \ 0 ~7.4 cn milw

/ ,/—W3 1'& 80 o -121 cm mlw

Plan C

Smaller core material, 0.09 to 0.7 g, and the armor stone of

used for Plan C (Figure 38) to reduce transmission for the 17- and 20-sec

waves. Transmission increased slightly for 13-sec waves to -22 p
Plan 1 values (Figures 39 and 42), but decreased for 17- and 20
+20 percent and +8 percent of Plan 1 values, respectively (Fig
42). Use of different armor stone size between Plans A and B
size between Plans B and C had little effect on transmission for t
period.

Plan D

A cross section was developed to transmit more energy for the 13-sec
waves, yet reduce transmission for the 17- and 20-sec periods. The shorter
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period waves approached depth-limited breaking conditions near the cross
section, and it was felt that transmission of the 13-sec waves occurred mainly
through the core material. Therefore, core and armor stone sizes were
increased for Plan D to 86-148 g and 5-11 g, respectively. Reduction of
transmission for the 17- and 20-sec periods was attempted by placing a thin
metal strip level into the upper portion of the structure. The barrier was
placed level with the crown elevation and into the structure a distance

Y, =5.1 cm (Figure 43). Figures 39 and 42 show that transmitted 13-sec
waves for Plan D increased to +6 percent of Plan 1 values. However, trans-
mission for the 17-sec and 20-sec waves also increased to 45 and 17 percent,
respectively, higher than desired transmission (Figures 40 through 42).

| Bl cm milw

45 cm miiw

A \m_ ~7.4 cm mllw

. o
,/_w3 i N il RV,

Figure 43. Cross section of Plan D

Plan E

The stone sizes of Plan D were used for Plan E, but the vertical barrier
distance Y; was increased to 7.3 cm (Figure 44). The longer barrier reduced
transmission to +35 percent for the 17-sec waves and +8 percent for 20-sec
waves (Figures 40, 41, and 42). The transmitted 13-sec waves increased

1 < - i t : .
s~ A sxrnn marmmaetalatol Lo PR . JESIVY PSR PR SRS S S
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Figure 44. Cross section of Plan E

Plaw -
rian r
To reduce 17-sec transmitted waves, Y, was increased to 8.9 cm (Figure
45). Figures 40 and 42 show 17-sec transmitted waves were less than Plan E
waves, but were 25 percent higher than Plan 1 K, values. Transmitted waves
were also reduced for 13-sec and 20-sec periods to -6 and +4 percent, respec-
tively, and were within the acceptable range (Figures 39, 41, and 42)
9.3 cm
r_ 1 81 cm nmllw

45 cm nmllw
28B4 cnmiw B9 cm

|
0.00 cn mitw |
/y I~7.0 em \\2.7 cm
Wi Jr 7.4 cm mily
Wa _—7.4 cm mlly
W 11 @ 8.0 om
_L% ? .L__.,\l.._j -121 cm mlw

values for 20-sec waves. (Figures 37 through 42). The increase of Y, in
Plans D through G reduced transmission coefficients for all periods tested.

Transmitted wave heights were within +10 percent for the 13-sec period for
Plans D, F, and G, and was +11 percent for Plan E. Plans E through G gave
acceptable K, values for the 20-sec period, but all vertical-barrier plans gave
higher transmitted wave heights than Plan 1 values for the 17-sec period.
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17-sec transmission to +5 percent of Plan 1 values but also lowe
and 20-sec transmitted heights to -22 and -21 percent, respectlvely (F gure
through 42).
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Plan |

To increase transmitted energy for 13- and 20-sec waves, the vertical
distance above the crest elevation of the transmission barrier Y, was decreased
to 1.3 cm and Y; was kept at 8.9 cm for Plan I (Figure 48). The 17-sec trans-
mitted waves were 10 percent higher than Plan 1 values, but transmitted waves
for the 13- and 20-sec periods were -17 and -12 percent of Plan 1 values,
respectively. (Figures 39 through 42).
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Summary of Transmission Tests

Material sizes and barrier lengths used for transmission tests are
summarized in Table 10. Small-scale transmission tests were used to deter-
mine the breakwater cross section at a 1:75 scale that would reproduce
transmitted wave heights obtained during the stability tests with a 1:43 scale.
The 1:75 cross section developed would be used in the Noyo three-dimensional
harbor model. It was desired to use one cross section for the entire test series
to maintain efficient testing of the harbor model. However, none of the nine
plans tested at the smalil scale reproduced the Plan 1 transmitted heights for all
the test perloas but several pians reproduced the desired H, for one or more
ased on the Smali-scaie test resurts tne comomauon of Plans F and

~ +1. 2 -

8 9—c barrler ( Plan F) would be nserted
11.4-cm barrier would be placed for 17-sec waves.

An important detail to note is that the test periods differ between the two-
dimensional and three-dimensional studies. The three-dimensional tests
include periods of 7, 9, 11, 13, 15, 17, and 19 sec. It was felt that Plan F
should be used for periods of 13 sec and shorter and for the 19-sec period, but
it was uncertain which plan should be used for the 15-sec period. Because of
this uncertainty, four 15-sec waves of varying height were generated with
Plan F installed, and incident and transmitted wave heights were obtained.
Although no large-scale data were collected for this period, the transmitted
wave heights should be within the range of the 13- and 17-sec H, values if the
appropriate plan was used. Transmitted and incident wave heights were
plotted in Figure 49 with 13-sec transmission data using Plan F and 17-sec

data using Plan H. The figure shows 15-sec transmission data with Plan F are
higher than 13-sec values and lower than 17-sec values. Figure 49 indicates
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Plan F should be used with the 15-sec period in the three-dimensional harbor
model.
Table 10
Transmission Model Material Sizes
W v
I'1 "3 I" 1 1 ¥ 2
Plan g g g cm cm
A 29 io 44 0.7t0 2.0 0.09 to 0.7 - -
B 44 to 86 0.7 t0 2.0 0.09 to 0.7 - -
o] 44 to 86 0.09 10 0.7 0.09t0 0.7 - -
D 86 to 148 5t0 ii 0.09 to 0.7 5.1 -
E 86 to 148 5to 11 0.09 to 0.7 7.3 -
F 86 to 148 5to 11 0.09 10 0.7 8.9 -
G 86 to 148 5to i1 0.0910 0.7 ii.4 -
H 86 to 148 5to 11 0.09 to 0.7 8.9 25
I 86 to 148 5to 11 0.09 10 0.7 10.2 1.3
15
Pian
wF(13s)
OF(158) g
10 s H{17s)
! t
E b fes @ 3!
- o™
T o y
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Figure 49. Transmitted versus incident wave height for Plan F, 15-sec waves
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Stability tests were conducted in two and three dimensions to identify a
stable breakwater cross section for the proposed Noyo Harbor breakwater.
Additionally, two-dimensional transmission tests were performed to determine
a smali-scale cross section that reproduced transmission of the proposed
breakwater cross section The small-scale cross section was used in three-

. T vy 100 AN

dimensional harbor te: ests of Noyo Harbor womn 1994). Results of the
- P . N

Based on the results of the two-dimensional stability test conditions
reported herein, it was concluded that:

a. The maximum H,, measured at the location of the breakwater for
random waves was 5.8 m. The higher waves in the spectra became

ph DRSS M IV R R [ MO SR Sh I PR Ry [ SRR |
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b. Five two-dimensional stability plans were tested at a 1:43.3 scale, two
consisted of an Accropode armor layer, and three consisted of dolosse.
Damage did not ex_ceed 2 pvercent for ,a_ny of the pl@ns and all were

observed during Plan 3 tests (3.8—m dolos), and the plan was termed
moderately stable. Plan 5 (5.9-m’ dolos) was stable, but numerous
units rocked in place, and it was recommended that a dolos breakwater
be constructed of units 6 m* or greater. Plans 1 and 4 (9-m®
Accropodes and 7.9-m* dolosse, respectively) were considered conser-
vative designs because it was felt the structures could withstand much
higher waves than the test conditions generated. Plan 2 was
constructed of 7.6-m® Accropodes and was stable.

Chapter 5 Conclusions



Three-dimensional stability tests were performed with random waves only
for offshore conditions from the wes‘t—northwest wave direction Resuits of

1 1
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Armor units used on the modified plan included 14- and 8.3-m Accropodes,
11.9- and 7.0-m® Core-Locs, and 19- and 8.3-m? Accropodes. In addition to
different armor units, the toe buttress configurations also varied between
modified breakwater plans. Based on results of the three-dimensional stability
tests for the given test conditions, it was concluded that:

a. The armor units selected for the original design were stable if the toe
was stable. Plan 6 included a metal strip at the base of the structure to
stabilize the toe. Analogous results would be expected if a toe trench
or driven piles were used to fix the toe. After tests with Storm I wave
conditions (Table 7), one Accropo 1sp1acec1 but no further

Dg
S
.S
e
[«
a
z

=

2

le']

=

-+

3,350-kg stone in the bntness, and 5,080-kg stone was placed at the toe
of the 14-m> Accropodes in Plan 3.

c. A wider buttress was found to increase toe stability in most areas of the
structure during tests with the original plan. An 18.3-m-wide buttress
of 3,350-kg stone fronting the 14-m> units on the sea side gave suffi-
cient stability to the overlying units (Plans 4, 7, and 8). An
18.3-m-wide buttress on the lee side was displaced and caused
Accropodes to slip on the structure slope (Plan 5). A 24.4-m-wide
buttress of 3,350-kg stone remained in place during tests; however, a
scour hole developed in the wider buttress, which caused the break-
water to fail (Plan 7). Heavier stone (5,080 kg) was placed in the
vicinity of the scour hole, but was also dislodged, resuiting in break-

sxrmdmee Lotlc oo /M. O\

water failure (Plan 8).
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d. It was determined that the wave height in the vicinity of the lee side of
the north roundhead could be reduced by 10 to 15 percent if the crest
width at the head was reduced from 29 m to 9.1 m. Although the
energy was reduced on the north roundhead lee side, a toe buttress of
3,350-kg stone, three stones wide, used in Plan 9 was not sufficient in
stabilizing the toe.

e. The modified structure was found to be stable for two successive series
of Storm IA waves with a wider toe buttress of 3,350-kg stone installed
with either Accropodes (Plan 10) or Core-Locs (Plans 11 through 13)
used in the armor layer. However, the buttress deteriorated if the struc-
ture was subjected to five successive storms without rebuilding the
structure. Neither the 14-m* Accropodes (Plan 14) nor the 11.9-m?

Core-Locs (Plan 13) placed on the north roundhead were of sufficient
size to stabilize the breakwater. A 19.9-m’ Accropode was required to
provide sufficient breakwater stability with a stone toe buttress for five
consecutive storms without repair (Plan 15). A heavier Core-Loc
model unit was not available at the time of testing, but based on
previous test observations, it was assumed that a prototype Core-Loc
weight of at least 16.9 m® would be required for stability for the wave

conditions tested.

f.  Although it was desired to achieve breakwater stability for all depth-
limited wave conditions, wave hindcast data indicated that deepwater
waves higher than 6.7 m did not occur over a 20-year period of
measurement for wave periods greater than 18.7 sec (Corson et al.
1986). The breakwater was found to be stable using both 14-m?
Accropodes (Plan 16) and 11.9-m® Core-Locs (Plan 17) placed on the
north roundhead for five successive storms if the 20-sec, 8.1-m wave
condition at the breakwater was omitted for three of the storms.

Two-Dimensional Transmission Tests

Transmission tests were conducted at a 1:75 scale and the results were
compared to two-dimensional wave heights of Plan 1. The cross section
developed was to be used for three-dimensional harbor tests of Noyo with
regular waves only. Therefore, regular waves were used for comparison
between the small-scale and 1:43-scale tests.

Nine plans were used in transmission tests, but no one plan tested dupli-
cated Plan 1 transmission for all of the test periods (13, 17, and 20 sec).
However 13- and 20-sec transmitted waves with Plan F were comparable to
Plan ransm1ss1on ana i7-sec waves with Plan H gave acceptable trans-
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Introduction
This report contains structural analyses of dolos, Core-Loc, and Accropode
concrete armor shapes for the offshore breakwater at Noyo Harbor, CA. The
PC computer-based program PC-ARMOR is used to investigate the structural
response of the hydraulically stable dolos options. Structural information on
the selected Core-Loc and Accropode units is based on a high-resolution finite

element method (FEM) comparison (Melby and Turk 1995). Additional
information is provided regarding concrete mix design that may be useful in
evaluating the concrete armoring options.

Because the majority of worldwide research conducted to date on concrete
armor response has concentrated on hydraulic stability, knowledge of the
structural response of many concrete armor unit (CAU) types is limited.
Static, in-place wave loading and impact loading are the significant
components contributing to mechanical stress levels. For dolosse, the Corps
has made significant strides in measuring these structural stresses and in
understanding armor unit structural response. But littie work has been done to
quantify structural response in other armor shapes.

As a result of the dolos measurement program, a stress prediction method-
ology and an associated reliability-based structural design technique have been
developed (Melby 1990, 1993; Melby and Turk 1992). Structural analyses
obtained for the hydraulically stable dolos investigated within this report were
made in accordance with these methods

Core-Loc and Accropode armor units react differently than dolosse because

they are more stout and are placed in a thinner layer on a steeper slope. On
dolos slope, typically 1 to 2 percent of the units are rocking for even small

o
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wave conditions; and these units can be assumed to break (Melby and Turk
1993). But the Core-Loc and Accropode layers typically have no units rocking
for the design wave condition, and, because of their blocky shapes, can be
assumed to have no initial breakage, provided a stringent concrete quality
control program is followed.

The doios characteristic shape (siender appendages extending from a slender

ceniral section) resuits in very high stresses in the central section. But because

of this siender central section, structural measurements that utilize siender
) FRNTYS Py [PPSR . . D Th-cm bm bl LTty aleaae Vs T o
DECdIll UICOLY dIC ICIdLIVElY €ddlly IIladc. Luc L0 UIC DI Y SHape, LOic-LoC
nnd Annsanmads i1l txreminnlly; hhasvra mmiinh gmmallae aftencs lagala Thia 10
dalid ALL UPUUC 11 lyplbdlly 11dVCT 1LLIIUCIL DIIALITL DT ITVOId. LI DD
fartiiitnnie ae tha hlasnlkv chana Anac nat lanAd itcalf tn clandar hanm thaney
1UiLluIlvVUD as uiv UlWl\_y ouayc UULWD 1IUL IVHIU ILWDLVLL WU DiIviIlLL vvalll uxcuxy
accimntinng Qﬂl‘l arnsnrata ch‘ain maoaacnramantc rnnnirn mnr-h manra nnmr\h(\afnfl
uoouluyu\uxo ALV AVvVULdLyY Ol dlll llivaouiviiiviiw l\/\lull\/ 111UNIL 11IVA N \,lexylxvutvu
and expensive surface strain gage structural instrumentation. Some structural
1d expensive surface strain gage structural instrumentation. Some structural
measurements have been made using load-cell-instrumented Accropodes. But
because the load cell requires slender beam theory assumptions to interpret the

strain gage measurements of Core-Loc or Accropode response have been made
to date. The structural analyses made herein are therefore restricted to review
of some finite element studies of the units under various loading configura-
tions. Because of the blocky shapes it is assumed that the stresses are low
under normal loading conditions and that representative FEM analyses are
adequate. But, like other concrete armor units, impact stresses in the blocky
units will likely be very large if the unit undergoes a rollover either during
construction or due to instability on the breakwater. Therefore armor unit-to-
unit impacts from large movements should be minimized.
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b. Large-Scale Dolos Flume Study (LSDFS) (Melby and Turk 1993).

¢.  Smali-Scale Dolos Flume Study (SSDFES) (Melby 1992).

rmt 1 1 1 . 11 1 P M £ X _ 11
1ne metnodas used 1o empirically determine th Slg stress are from Me Dy
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independent.

in dolosse when they are s1tt1ng in the casting yard or being picked by a crane
are of the same order of magnitude as the largest pulsating stresses. Static
mean stresses on the breakwater are double the casting yard stresses. The
static stress mean plus one standard deviation is three times the casting yard
stress. The impact stress for a moderate drop of one tenth the fluke length is
shown for 9- and 18-tonne dolosse. It can be seen that these stresses are
nearly ten times the casting yard stress. Measurements of impact stresses for
dolosse constituted a major part of the LSDFS. The tests indicated that the
impact stress was typically very high and that rocking dolosse would probably
break. Therefore, it is imperative that slender CAUs remain hydraulically

A _L
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exceedance probability was chosen to be P = 2 percent. The results of the
dolos structural analysis, as output from PC-ARMOR, are listed in Table Al.
These values indicate that the design stress level for the return period of the

design event will be exceeded in 2 percent of the on-slope un1ts This design
stress can be interpreted such that, for every 100 stable dolosse on-slope, two
will experience a tensile stress level of at least the design stress level during a
design event. This stress computation method does not imply that if the unit
experiences this stress level it will fail. Also, the prediction methodology used
to determine the design stress is approximately 10 to 20 percent conservative.
Therefore, it is likely that the stable design stress will be exceeded in very few
dolosse.

Although the above stress precncuon metho s allow ncorporauon of some
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Impact stresses are due to drop of
vertical fluke on rigid base from
height of 0.1 times the fluke length.
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Figure A1. Relative magnitude of dolos stresses for various loads
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w, Stress
Unit tonnes ] MPa
Doios 9 3.2
Dolos 19 4.0
Dolos 14 3.7

extended using a Level 2 first-order-second-moment reliability analysis. The
methods utilize the standard form of the load and resistance factor design
(LRFD) equation of the form

vyO =0R (Al)
V=p T n

where the load and resistance factors, Y and ¢, respectively, provide a measure
of the statistical uncertainty associated with the applied loading Q and the
structural resistance R. Typically, v is greater than one to increase the loads

and ¢ is less than one to decrease the strength.
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For the Noyo breakwater, the values of the load and resistance factors were
chosen from Melby and Turk (1993) as y = 1.0 and ¢ = 0.9 for unreinforced
flexure. This load factor was chosen so as to preserve the exceedance

probability P = 2 percent. For flexure, the balanced LRFD equation can be
expressed as

an =0 Rii
YM, = 00.89M,,
VS kG, =¢0.89M
NORIS ) =h0RIM /S (A2)
v(0.82G,) = $0.89M /S,
~n AN
J:)

in which M, is the nominal moment, M, is the critical moment, S,, is the
section modulus, k,, is a stress contribution factor, o, is the tensile stress, and
£ is the splitting tensile strength.

Equation A2 is applicable for both unreinforced and reinforced sections.
The equation states that the strength must be approximately equal to the design
stress, which corresponds to the design exceedance probability.

A factor of safety against armor breakage FS can be defined, using
Equation A2, as FS = f/c,. The factor of safety should be 1 for properly

specified concrete strength. Table A2 lists the factors of safety for 35-MPa

4~ AT

and 45-MPa compressive strength concretes. As can be seen from the struc-
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stress prediction methodolosy is 10 to 20 nercent conservative. Tt is therefore

preciction methodelogy 1s 10 to 20 percent conservanive, 1M 1s thererore

expected that, given a minimum compressive strength of 45 MPa, dolos

ak ill be lim i ergo impacts and that less than

Table A2
Dolos Reliability Analysis

Weight| Stress 35-MPa 45-MPa
Unit tonnes| MPa | Factor of safety | Factor of safety
Dolos 9 3.2 1.1 1.4
Dolos 19 4.0 0.86 1.1
Dolos 14 37 0.94 1.1
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Finite Element Structural Analysis

The finite element method (FEM) has been used to compare the structural
response of dolos, Core-Loc, and Accropode shapes for several static loading
modes. Properties of the finite element models are shown in Table A3. The
FEM grids for the three units modeled are shown in Figure A2 along with
loading and boundary conditions for a torsional load case. Each unit was
9 tonnes and similar loads and boundary condition constraints were applied to
each. The units were loaded in flexure, torsion, and a combination of these.
Figure A3(A.) shows a Core-Loc loaded in flexure with a 9-tonne point load
applied to one fluke end and the other fluke fixed. Figure A3(B.) shows
another flexural load condition with a 9-tonne load applied to the center of the
fluke. Figure A3(C.) shows a loading condition where 9-tonne flexural and
torsional loads were applied to one fluke tip with the opposing fluke fixed
rigidly along the outside surface.

Table A3
Finite Element Model Properties

Fully three-dimensional linear elastic model with about 2,000
Model properties nodes and 1,500 elements, depending on the unit shape.

Armor weight W = 9 tonnes

Modulus of elasticity E = 3.5*10* MPa

Armor and material Poisson’s ratio v = 0.21

properties Specific gravity S = 2.27 relative to seawater

FEM results are summarized in Table A4 in terms of maximum tensile
stresses. All load cases were analyzed for the dolos and Core-Loc but only the
pure torsion and pure flexure with tip load were analyzed for the Accropode.
As illustrated, for equivalent weight units, the Core-Loc maximum tensile
stress for static loads ranged from 34 to 62 percent that of dolos, and was
74 percent that of Accropode for both torsion and flexure. These results are
graphically depicted in Figure A4.

In conclusion, specifying a 28-day compressive strength of 35 to 45 MPa,
as was done for the dolosse, with corresponding tensile strengths of 3.5 to
4.5 MPa, will provide adequate strength to resist even the most severe loads.
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Table A4
FEM Static Stress Comparison

Load Case Stress, 0, MPa

Core-loc Dolos Accropode

Torsion 1.12 2.08 1.52
Flexure - fluke tip load 1.12 24 1.52
Flexure - fluke center 2.10 3.42 _
load
Combined flexure and 1.91 3.83 _
torsion

Concrete Mix Design and Strength

Enhancamante

Gmi 50 IGAR Il lvl LA ~4

Quality control testing during the 1986 Crescent City rehabilitation revealed
a mean flexural tensile strength of f, = 6.3 MPa (Kendall and Melby 1990) for
the steel-fiber reinforced concrete used. The concrete tensile strength at
Crescent City was therefore well above the generally specified normal strength
of 3.5 MPa. This high strength has contributed to the superior performance of
the Crescent City dolosse. The Humboldt dolosse also had high strength
concrete, and they too are performing exceptionally.

The necessity for selecting a mixture design capable of producing concrete
to withstand design wave loading and harsh marine environments cannot be
overstated. Ideally, the concrete produced will have a low porosity, be imper-
vious to seawater attack, be abrasion-resistant, and possess high strength. The
concrete would contain a consistent homogeneity throughout all placed units.
Quality control and assurance must be implemented during all phases of
construction. The quality of concrete produced is a function of the proportions
and type of cement, aggregate, water, and admixtures as well as the mixing,
placement, and curing.

The following information on a recommended concrete mixture serves only
as a starting point for trial mixture ae51gn Many Iactors anect tne 1ntegr1(y of
1nm pI'OOUC[. vanamuty in me chemical and phys v

~F
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Figure A3. Loading and boundary conditions for various loading conditions
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Maximum Stress, MPa

Core-loc

Figure A4. Finite element structural response comparison

The concrete used should possess the following qualities:
a. 28-day compressive strength = 45 MPa.
b. 28-day splitting tensile strength = 4.5 MPa.

to 10 cm.
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d. Air entrainment = < 5% * 1%.

T n crmnrifinntines hacnlinag yralhiinas far a teinl miv Agian ara ag Qe
The specification baseline values for a trial mix design are as follows:
1 Camoant
“u. NoAdkiviaaL,.
(1) Type II or III with the optional 8% limit of C;A invoked

(2) 374-392 kg/m’.

(3) Water/cement ratio 0.33-0.38.
b. Aggregate.

(1) Non-alkali-silica reactive.

(2) Max. size = 3.8 cm.

(3) Gradation conforms to ASTM C33.
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Water - potable, free from high concentration of sodium or potassium.

x

Appropriate air entrainment.
tensile strength required.

(4) Fineness modulus for fine aggregate 0.24-0.30.
Admixtures.

(5) 30% of coarse aggregate to be crushed

c.
d.

unit should be accepted if th

a3

o

intact during a major design event, cracking can lead to corrosion and eventual

X

So while conventional steel reinforcing may keep components of an armor unit

v

cracks may provide a conduit for water to initiate corrosion of the steel bars.

failure of the unit. Yet, although most U.S. conventionally reinforced concrete
units show signs of reinforcement corrosion and resultant spalling, no armor
units have been observed to fail due to reinforcement corrosion. Very few
reinforced units have been observed to be cracked through crucial cross

sections that were not broken. They typically have stresses well below the
strength or, when rocking, have stresses well above the concrete strength. This

and discussed above, where

e LSDFS

confirms stress measurements made in th
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stable dolos stresses were quite small relative to impact stresses.
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dispersion improved during casting, the workability problems coupled with the
added expense of the steel make SFRC only marginally effective.

At this time no recommendation is made as to the use of steel reinforcing
for the Noyo Project because the design stresses are considered low enough to
provide sufficient reserve capacity in the Core-Loc, Accropode, and dolos
units.

Concilusions

The following is a summary of the conclusions from this report of the
acceptable concrete armor unit design for the Noyo Harbor breakwater:

a. The design dolos factored tensile stresses are below the factored
strength using a 28-day compressive strength of 45 MPa, provided they
do not rock in place or move about on the breakwater. This stability
was verified in a two-dimensional flume physical model study.

b. Based on a high-resolution finite element analysis, the design Core-Loc

and Accropode will have maximum tensile stress levels over 35 percent

Taca ¢+l slon D £ RAD- Fncloman cdonmma T 1 2. oL . 1_1_ R, [ S
less than the 3.5-MPa design stress level in the dolos, and maximum
A nracaiira atenaca Tavrals sx17all lalAcey ¢ha atsarncmtl AL sl cben el
CULLLPITODIVE DLICHS ICVUId wWlll UCIV LT DL cugtu U1 11UIL111dl SUCHELIL
concrete, provided they also do not rock on the breakwater. Stability
was verified in two-dimensional and three-dimensional physical model
studies. Therefore, a conservative design tensile strength of 3.5 MPa
should be adequate, provided the units do not undergo large

displacements such as rollovers.

¢. A moderate strength concrete has been specified to provide armor units
that will not crack or break under normal nonimpact design conditions.
Steel or plastic fibers may be added to the mix in lieu of additional

cement.
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Photo B4. Plan 1, Side view, after testing
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Photo B7. Plan 2, Side view, before testing
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Photo B13. Plan 3, Side view, before testing

Photo B14. Plan 3, Seaside view, before testing
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Photo B15. Plan 3, Leeside view, before testing

Sy d

Photo Bi6. Pian 3, Seaside view, after testing

Appendix B Two-Dimensional Stability Photographs

vy

«©



o
(@]

Photo B17. Plan 3, Leeside view, after testing

Photo B18. Plan 4, Side view, after testing
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Photo B19. Plan 4, Seaside view, after testing

Photo B20. Plan 4, Leeside view, after testing
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Photo B21. Plan 5, Side view, before testing

Photo B22. Plan 5, Seaside view, before testing
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Photo B23. Plan 5, Leeside view, before testing
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Photo C12. Plan 2, south roundhead after Storm | waves
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Photo C14. Leeside view of Plan 3 before testing
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Photo C26. Leeside view of Plan 4 after Storm | waves
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Photo C34. Leeside view of Plan 5 before testing
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Photo C40. Plan 5, south roundhead after Storm |A waves
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Photo C44. Plan 6, south roundhead before testing
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Photo C46. Leeside view of Plan 6 after Storm | waves
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Photo C50. Leeside view of Plan 6 after Storm |IA waves
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Photo C54. Leeside view of Plan 7 before testing
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Photo C70. Leeside view of Plan 9 before testing
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Photo C78. Leeside view of Plan 10 before testing
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Photo C82. Leeside view of Plan 10 after Storm IA waves
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Photo C86. Leeside view of Plan 10 after two series of Storm IA waves
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Photo C94. Leeside view of Plan 11 after Storm [A waves
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Photo C98. Leeside view of Plan 11 after two series of Storm IA waves
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Photo C102. Leeside view of Plan 12 before testing
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Photo C104. Plan 12, south roundhead before testing
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Photo C106. Leeside view of Plan 12 after Storm IA waves
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Photo C108. Plan 12, south roundhead after Storm IA waves
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Photo C110. Leeside view of Plan 12 after two series of Storm IA waves
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Photo C112. Plan 12, south roundhead after two series of Storm IA waves
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Photo C122. Leeside view of Plan 13 after two series of Storm |A waves
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Photo C128. Plan 13, south roundhead after two series of Strom IA waves and
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Photo C130. Leeside view of Plan 14 before testing
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Photo C134. Leeside view of Plan 14 after five series of Storm IB waves
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Photo C142. Leeside view of Plan 16 before testing
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Photo C146. Leeside view of Plan 16 after five series of modified Storm 1B
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Photo C150. Leeside view of Plan 17 before testing

Appendix C Three-Dimensional Stability Photographs



BEFORE

TEST
C708. 428

C77



E’
!
;
A

Photo C154. Leeside view of Plan 17 after five series of modified Storm IB
waves

O
o)

Appendix C Three-Dimensional Stability Photographs




=
>
=
°S
°2
=

%

P17 s5

()

o ©
w =

C79

ive series of modified Storm IB

south roundhead after fi

Plan 17,
waves

Photo C156

I



9]

O

_NOYO 3D
P17s5
Q

AFTER
TEST

X“i 2 -‘Qf.f‘) €

i tr (% (i
< b W

RO

!

Photo C158. Leeside view of Plan 17 after five series of modified Storm IB
waves at +0 m milw

Appendix C Three-Dimensional Stability Photographs



55

17

>
E
=
@
<
=
19

i

AFTER
TEST
8. 436

708,

NOYO 3
TABILITY

S

C708.439

d Storm IB

ie

ies of mod

Ive ser

south roundhead after fi

waves at +0 m mllw

Plan 17

Photo C160

c81




Appenaix v
»

Notation

a Area scale

E Elastic modulus

f Splitting tensile strength

FS Factor of safety

H Wave height

H, Highest wave height at the structure that causes no damage

H. Incident wave height

H,, Zero-moment wave height

(H,,):4 Offshore zero-moment wave height, three-dimensional tests

(H,0)4 Zero-moment wave height at north roundhead, three-dimensional
tests

(H,,), Offshore zero-moment wave height, two-dimensional tests

H,, Maximum wave height

(H,20)4 Maximum wave height at north roundhead, three-dimensional tests

H, Significant wave height

(H), Significant wave height at north roundhead, three-dimensional
tests

H, Transmitted wave height

ks Stress contribution factor

K, Stability coefficient

K, Transmission coefficient

l Length scale

m Model quantity

M, Critical moment

M, Nominal moment

)4 Prototype quantity

p Exceedance probability

0 Applied loading

r Subscript denoting model to prototype

r, Dolos waist ratio

R Structural resistance

S Specific gravity

S, Specific gravity of an individual armor unit relative to the water
in which it is placed, S, = V./Y,

S Section modulus
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Time scale
Average wave period
Peak wave period
Volume scaie

Armor weight
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Vertical dictance helow crest elevation of transmission barrier
Vertical distance below crest elevation of transmission barrier
Vertical distance above crest elevation of transmission barrier
Angle of the structure slope measured from horizontal in degrees
(9)
\ 7

Resistance factor (¢)

Principal tensile stress (o)

Load factor (Y)

Specific weight of an individual armor unit (Y)
Specific weight of water (y)

Poisson’s ratio (V)
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