





LERERY

- D e e e e R e T o TR P o

O (Ivv— Lananen o e e e e T R e T S TR e

U. S. Amy, Committee on Tidal Hydraulics, CE, TIDAL FLOW IN
ENTRANCES, by J. L. French. Jsnusry 1960, 54 pp - tables.
(Technical Bulletin No. 3)

This report comprises two analytical studies.
methods of potential theory are applied to the problem of determin-
ing the velocities In the approaches to & canel connceting an ocean
with & lagoon or bay. Entrances with and without jetties extending
into the ocean are considered. The streamlines are determined and
velocities along the streamlines are given in a form suitable for
simple application to engineering problems. In the second study,
Tollmien's analyses for (1) the free jet boundary and (2) jet of-
flux from a linear slot are applied to the problem of the efflux of
& two-dimengionsl jet from a slot of definite width with particular
reference to Jet flow from a channel into a region of surrounding
quiet water, such as an ocean. The literature was searched for ap-
yropriate experimental data, and the constant of Tollmien'’s theory
is evaluated accordingly. The streamlines are determined, and ve-
locities along the streamlines computed and presented
in a manner susceptible of simple application
to practical engineering problems.
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PREFPACE

The Corps of Engineers, Department of the Army, is charged by Con-
gress with the responsibility of establishing and maintaining navigable
channels to the major seaports of the United States. This responsibility
frequently involves the establishment of a navigable chammel at tidal in-
lets and estuaries. To advise the Chief of Engineers in this phase of his
work, a Committee on Tidal Hydraulics has been set up within the Corps of
Engineers. This Committee, among other duties, arranges to have technical
studies made of various problems comnected with the establishment and
meintenance of chamnels in tidal waterways.

One of the problems encountered at tidal entrsnces is that of flow
patterns - velocity and direction - which develop at the various inlets
selected for navigation improvements. This problem has not received suf-
ficient attention in the past to bring about & guantitative understanding
of these flow patterns. As one step in overcoming this lack of under-
standing, the Committee requested assistance from the Mechanics Division of
the Bureau of Standards in laying the theoretical groundwork for the solu-
tion of this problem. Arrangements for this assigtance were made by the
Beach Erosion Board of the Corps of Engineers in a letter, dated 20 October
1950, to the National Buresu of Standards.

The problem, in effect, has two, more or less independent aspects:
the definition of the pattern of flow from the ocean into the inlet, and
the definition of the pattern of flow from the inlet into the ocean. These
two aspects can be conveniently handled separately, and the National Bureau
of Standards reported on them separately to the Committee in 1951. The com-
mittee has chosen to publish the two reports together in this volume, but
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has maintained the separation of the two studies in the publication.

The funds available did not permit as extensive an exploration of
these problems as is desirable. However, the two reports that have been
prepared are believed to represent a valuable contribution to the litera-
ture on this subject. Certain simplifying assumptions were made in both
cases, and only & limited number of conditions were investigated; these
are explained in detasil in the report.

Velocity Pattern at Entrance

The first part of the report, prepared by John L. French, National
Bureau of Standards, deals with the pattern developed by flow from the
ocean into an inlet. For this study, the following simplifying assumptions
were made:

a. The depth was uniform and the seme in the ocean and the inlet.
b. The effect of viscosity was neglected. _
Two forms of inlets were considered: an inlet without jetties, and an in-
let with jetties extending into the ocean.

The asuthor recognized that the simplifications introduced into the
analysis would prevent an exact correlation between the flow patterns de-
veloped by his study and actual flow patierns under field conditions. He
points out that this discrepancy would become more and more evident at
points downstream from the entrance where diffusion would cause the Jet to
spread over the entire width of the Jetty channel.

This analysis can be used to predict the flow direction and velocity
pattern at the inlet for conditions of uniform depth and unobstructed ap-
proaches. The presence of shoals or other obstacles would, of course,
cause the actual flow pattern to vary from the predicted patterns of
streamlines as shown in figs. 5 and 8 of the report. An example of the use
of this analysis of flow at tidal entrances 1s given in Appendix A to this
report. ' ‘
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Flow Pattern at Exit

The second part of the report, also prepared by Mr. French, deals

with the pattern of flow from an inlet into the ocean. The physical as-
pects of this problem suggest similarity to the diffusion of & submerged
two-dimensional jet, and the velocity profiles have been developed on this

basis. An example of the use of this analysis of discharge from an inlet
into the ocean is given in Appendix B.
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TIDAL FLOW IN ENTRANCES

PART I: THE VELOCITY DISTRIBUTION AT THE ENTRANCE

Scope of Investigation

1. At a conference between Dr. Martin A. Mason of the Beach Erosion

Poard and Dr. Garbis H. Keulegan of the National Bureau of Standards, the
scope of the project was defined in detail and the following four aspects
of tidal flow from an ocean through a relatively short chamnel into a
lagoon were agreed upon for the investigation:

a. Velocity distribution at the entrance.

b. Velocity distribution at the exit.

Ce Determinetion of the mean velocity in the chammel.

d. Velocity distribution in the channel.

The Present Problem

2, Part I of this report is confined to the first problem listed
above-~the velocity distribution of the water as 1t approaches and enters
the connecting chamnel between the ocean and the lagoon.

3. Fig. 1 is a definition sketch of the ocean, comnecting channel,
and lagoon. Inasmuch as the ocean,
connecting channel, and lagoon in
question are assumed to be subject
to tidal action, this aspect of the
investigation will apply to flow

from the lagoon to the ocean as
well as flow from the ocean to the
lagoon. The various factors af-
fecting the velocity distribution

at and near the entrance include,

LAGOON

CHANNEL

OCEAN

in addition to the shape or geom~
etry of the entrance itself, the
variation in depth of the ocean or Fig. 1. Definition sketch of problem
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lagoon as the entrance is spproached, the presence of littoral currents,
the effect of frictional resistance on the flow, the effect of wave action,
and if fresb-water drainage occurs in the lagoon, the effect of density
currents. The effects of littoral currents, wave actlion, and possible
density currents on the velocity distribution were not originally con~
templated as forming a part of the project. For the present, the effect
of frictional resistance and the effect of chenging depth in the ocean or
lagoon as the chamel entrance is approsched will be neglected. Hence the
present problem resolves itself Into the effect of various chammel-entrance
shapes on the velocity distribution of a two-dimensional flow of a perfect
flunid from a large body of water into a relatively nerrow channel entrance.

h, The velocity picture at the entrance will be determined by the
methods applicable to free streamlines, methods devised by Helmholtz and
Kirchhoff and later elsborated by various lnvestigators. If fluid parti-
cles in flowing around a shayp corper of radius zero are assumed to remsin
in contact with the bounding surface, an Infinite acceleration of the fluid
particles is required to accomplish this result. This in turn requires
that the velocity and pressure be infinite at the corner. In order to
overcome this difficulty, Helwholtz introduced the concept of free stream-
lines, in which the assumption is made that separation occurs in the flow
of fluid particles around sharp corners. Thus, downstream from abrupt
changes in the bounding surface, such as those considered in this report,
the streamlines of the flow are separated from the boundary by an area oc-
cupied by fluid assumed to be at rest.

5. With real fluids, owing to viscosity, the motion is so modified,
of course, that points of infinite velocity and pressure do not occur, nor
does the fluid between the free streamline and the bounding suwrface remsin
at rest; it is in eddying motion. With the assumption of free streamlines,
the velocity and hence the pressure at sbrupt cormers is finite, and to
this extent the solutions by this wetbod of various flow problems involving
flow around sharp corners are more physically acceptable than solutions by
methods that indicate infinite velocities at such points. Nevertheléss s |
owing to the fact that with real fluids the region of fluid assumed to be
at rest in the theory is actually in motion through the effect of viscosity,
solutions by means of free streamlines must be regarded as approximations
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which become less and less valid as one proceeds downstream from the point
of separation. The region between the free streamline and the channmel
wall is in eddying motion, and the lateral diffusion of the eddies as they
move downstream obliterates the potential core of the Jet and causes the
outside jet boundaries to expand to the full width of the chammel at a
distance on the order of 10 channel widths from the entrance.

6. Under these circumstances, the use of the free streamline method
to determine velocity distributions st distances in excess of approximately
two or three channel widths downstream from the entrance would pot be
warranted.

7. The solutions in this report are given in graphical form, i.e.,
the streamlines are shown and the velocities along the streamlines are
given in terms of the free streamline velocity and also in terms of the
mean velocity in the channel. The mean velocity in the channel must be de-
termined from a consideration of the tidal fluctuations in the ocean and
lagoon, and the dimensions and roughness of the comecting channel. This
problem will be considered in a later report on this project.

Previous Treatment of Free Streamline Flow

8. The literature is replete with investigations of two-dimensionsl
flow problems in which the bounding surfaces take the form of possible
channel~entrance shapes. Unfortunately, however, these problems have been
almost exclusively considered from the standpoint of determining the equa~-
tions of the free stresmlines and the coefficient of contraction. The com-
putation of the equipotential lines and streamlines in the body of the
flowing fluld bas been, in the great mjority of cases, enmtirely omitted.

9. The literature on two-dimensional fluid flow Problems that might
have application to certain tidal-entrance shapes 1s so extemsive that all
the references cannot be individually described herein. Indeed, the in-
vestigations have been so mummerous that although sn extemsive search of the
literature was made, it was by no mesns exhaustive, and could not have been
in view of the time limitation on the project. Hevertheless, a short
résumé of the more important references is believed warranted.

10. PFirst, most of the standsrd references in hydrodynsmics such as



£
L‘@ﬁmﬂoz'L and M:I.lne-—il‘.‘hamysoné treat the free streamline, two-dimensional flow

through an aperture in a plane wall, and through e chamnel corresponding
to the two-dimensional form of Borda's mouthpiece. Without exception, the
treatment is from the viewpoint of determining the eguation of the free
streamline and determining the coefficient of contraction of the jet.

11. PrasilT gives a solution of the two-dimensional, free streamline
flow through an aperture in a plane wall and shows a flow net. However,
the scale of the coordinate system 1s not given, and other inadequacies
liwmit the usefulness of the flow net given.

12. Greenhi112 has solved a variety of problems in two-dimensional
flow which have application to possible chanmnel entrances of various shapes.
Among these are those shown in fig. 2. The angle @ in fig. 2(a) and

2(b) may be varied to give solu-

\ / tions to many special problems,
apong them being most of those
\N7 treated by von Mises.~
{o}
{v)

13. I\ﬁche},ls also, among
many others, solved the problem of
the modified Bords’s mouthpiece
shown in fig. 2(d).

1k, Greenhill,‘?’ using pri-

- marily the work of Cisotti, lLevi-

TN N \
ﬂ ” ﬂ “ Civita, levy, and others, bhas
&

given solutions to many two-
) dimensional flow patterns involve
Fig. 2. Two-dimensional flow ing curved boundaries. Some of
boundaries these are shown in fig. 3.

15. Cisottil has also published solutions to most of the flow
problems shown in figs. 2 and 3.

16. The references cited above give solutions to the various
problems indicated, generally by giving the functional relation between

the complex potential and a parameter, which in twn is related through

% Raised numbers refer to references at the end of this part (Part 1)



another Tunctiomal expression to the

physical 2 plane. The actual de- /// //f~\\ {/~\\\
termination of the equipotential and
streamlines necessary for the present

problem was not done.

17. In general, the work in-
volved in applying the foregoing (o) (v)
solutions to the determination of the
low net is not difficult; neverthe-
less, it is in most cases tedious,
and the amount of labor involved is \ /
by no means small. For this reason,
it has been impossible with the time
at our disposal to utilize all the (el
material svailsble and to compute Fig. 3. Two-dimensional flow
the flow net for all the boundary with curved boundsries
forms shown in figs. 2 and 3. In
the remainder of this report, the equipotential and streamlines for the
two-dimensional flow through an aperture in a plane wall and through the
two~dimensional form of a Borda's mouthplece have been determined. Inage-
mach as any streamline may be replaced by a bounding surface without in
any way disturbing the flow pattern, these two examples will yield a fairly
representative group of possible channel entrances. It is nevertheless
regretted that more of the examples cited could not have been applied to
the present problem, and it is believed that the future application of
these two-dimensional flow solutions to the determination of the equi-
potential and streamlines for the various shapes of possible channel en-
trances will prove a useful tool in the practical solution of the tidal-

entrance problem.

Determination of Velocity Distribution

Preliminarg‘COﬁSi&erations

18. TIn the problem we are considering herein, the flow into the rel-
atively short channel from the ocean oOr from the lagoon will vary, of



course, with the difference in surface elevation between the two bodies of
water. Since this difference in elevation is caused by tidal action, the
flow into the channel will vary with time. However, since the tidal action
will vary slowly with time, we can for all practical yurposes consider

the problem of the velocity distribution st the charmel entrance as being
one involving steady flow only.

19. Owing to the fact that the velocity along a streamline will vary
as the channel entrance is approached, it is obvious from s consideration
of Bernoulli's equation that the surface elevation will vary. However, the
velocities that are encountered in tidal chamnels are such that the varia-
tion in surface elevation due to variation in velocities will be small com-
pared to the depth of the chamnnel. Therefore, insofar as surface varia-
tions are concerned, the problem may be considered for practical purposes
to be essentially two~dimensional. As noted previously, the effects of
friction and variation in depth of the ocean as the channel entrance is ap-
proached will be treated in a subsequent report, and for the present, con-
stant depth and nonviscous flow are assumed.

20. Under these conditions, the methods of conformal mapping have
direct application to the problem of obtaining the velocity distribution
at the channel entrance. For irrotational, two-dimensional, steady-flow
Problems it is necessary only that Iaplace's equation in two dimensions be
satisfied, and that the boundary conditions regarding coincidemce of
streamlines with fixed boundaries be observed. Where there is a free
streamline, the further requirement is made that the pressure and hence
the velocity along the free streamline be constant.,

' 21l. The ablility of the processes of conformal transformations to
satisfy the sbove-mentioned requirements and hence to provide solutions to
frrotational, two-dimensional flow problems has been amply demonstrated in
most of the standard references on hydrodynamics, and there is no need to
repeat the srgument herein.

Entrance analogous to
two-dimensional orifice

22. This is the type of entrance from the ocean to the channe/l (and
from the lagoon to the channel) shown in fig. 1.

23. Proceeding by the usual methods of conformal mapping,




Greenhill (page 33 of reference 2) has y
shown for the flow orientation given in
fig. 4 that the relation between the
flow pattern in the physical plane

2z =x+1y of the flow, and the com-
plex potential W = @ + i¥, where §

and V¥ are respectively the potential
and stream functions, is given by - I A .

Ac

ey 1
e Lt T
B
1/2 %2':- = log %—-}% S (1) N ———
and
sinh Q = e -i’gi (2) .
vhere t is related to W, @, and Fig. 4. Channel entrance
) corrvesponding to a two-
other characteristics of the flow dimensional orifice
through the relation
dz v i@ Q
£ = -V - il e = e (3)

In the preceding expressions, c¢ is the half-width of the jet at iunfinity
as shown in Tig. B; V is the velocity along the free streamline and also
the veloeity of the jet at infinity; € is the angle that the veloclty
vector makes with the positive x-axis; @ is the rate of discharge per
unit depth of channel and therefore has thé dimensions of a velocity multi-
plied by a length; and q is the velocity at any point x , ¥y in the flow
pattern. The potential and stream functions ¢ and ¥ are related to the
x and y velocity components through the expressions '

2t

and



where u is the component of the velocity vector in the x direction and
v is the y component. Obviously ¢ and ¥ Thave the dimensions of a
velocity multiplied by a length so that :ﬂ/Q and consequently { and Q
are dimensionless.

2k, Equation 1 has been derived on the basis that the zero potential
line passes through the two points B and B'.

25. Tn equation 2, replacing Q by its value Q = log { from
equation 3, and replacing the hyperbolic sine by its exponential form,
we have

ki
1/2[{;-%«6:&

which yields

kL) 2
t=e® + Vel 42 ()

and since { is infinite when W is infinite, we must use the positive

sign and
™ 2
QzeQ+ e 41 (5)
Or we may write
gseQ' 1+ Vl+e Q (6)

56. The real and imsginary parts of { may be conveniently deter-
mined by replacing the terms under the radicals in equations 5 and 6 by
their equivalent series forms. The binomial expansion equivalent to the
radical term in equation 5 will be convergent for negative values of the
potential @ , and equation 6 may be used to compute t for positive
valves of @ . Therefore, letting & and 7 be the real and imaginary
parts of ¢ , determined from equations 5 and 6, we have ,\ o

=8 +1nm (7)

27. Substituting this expression for ¢ into equation 1, and

separating the reals and imaginaries



FOL
(¢ =1)" +n0
and
"y _ -l N ]
1/2-(-;+n~‘h&n E—% tan E—{Li' (9)

28, Ietting b be the half-width of the chamnel as indicated in
fig. 4, we have y = =b at ¢ =0 and ¥ = Q/E, from which by equation k4,
{ = i at the point B'. gubstitution in equation 9 gives

T2+ (10)
and equations 8 and 9 become y
2
2+ X {(g * 1)2 N né}
[(E - 1)+
2 + My _ S -1 g
o e s (12)

29, Equations 7, 1l, and 12 permit the computation of the coordi-
netes in the =z plane corresponding to any value of the complex potential
W . These equations have been used to compute values of x/b and y/b cor-
responding to various values of =§/Q and ¥/Q. The results are given in
table 1. In fig. 5 the data of table 1 have been used to plot the stream-
lines and egquipotential lines of the flow net. Comparison of fig. 5 with
fig. 4 will show that the orientation differs by 180°. This was done
merely for convenience in drawing fig. S

30. Since the velocity is tangential to the streamlines at all
points, the data of fig. 5 indicate the direction of the current as it ap-
proaches the chanmel entrance. The problem of determining the magnitude
of the velocity remalns. ’ '

31. Since q = df/ds, where q is the velocity measured in the
direction of s , the velocity could be approximated from fig. 5 by de~
termining the potemtiel gradient Jf/ds along the streamlines. However,
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e;{

Fig. 5. Flow pattern through two-dimensional orifice

it is more convenient to broceed by means of equation 2, from which, in
view of equation 3,

o
sinh [log ~§- + ie] = e-ﬁ“ (13)

Substituting for W , its values in terms of @ and ¥ , and separating
reals and imaginaries

sinh log % cos 6 = e cos %‘f- (14)

and

¥

cosh]ng-gsiﬂékﬂe sinzg? (15)
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Eliminating 6 between equations 14 and 15 and rearranging,

2
., 2 2xp |
cosh” log % =1/21e® 41 + 1) -ke ¥ gin % (16)

Since V/Q must be infinite for § = =, the positive sign before the radical
mist be used.

32. Through this equation the velocity of any point may be deter~
mined in terms of the consbtant velocity V of the free streamline. In
teble 2 this has been done for various values of ¥/Q and =f/Q. It is,
however, more convenient in many practical applications to express g in
terms of the mean velocity in the channel. Ietting Vm be the mean channel
velocity, we have

[
Vo =%

v
where, as before, c¢ is the half-width of the jJet at infinity and b is
the balf-width of the channel. In view of equation 10,

V = et ¥ = 0,611 V

m 2+ x

33. Using this relation and equation 16, values of q/V and q/Vm
have been plotted against s/b in fig. 6 wvhere s is the distance measured
along a particular streamline from its intersection with the zero po-
tential line. The value of & for any given value of ¢ and ¥ was de-
termined from fig. 5.

34%. The use of the data of figs. 5 and 6 in determining the hori-
zontal velocity distribution in the approasches to a chanpel entrance are
illustrated by the following example. Suppose the half-width, b , of the
chamnel is 500 ft and the difference in surface elevation between the
ocean and lagoon is such that the rate of discharge in the chapnel, of
width 2b, is 2000 cfs per foot of depth. Suppose further that we wish to
determine the velocity at the point x/b = 0, y/b = 0.7, or in this example
for & channel half-width, b , of 500 £, x = 0 and y = 350 ft. From
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Fig. 6. Variation of velocity along streamlines for flow through
two~dimensional orifice
fig. 5 this point is seen to be on the streamline for which w/Q = 3/8, and
using fig. 5, s measured from the zZero potential line to the point in
question is found to be -0.3b. Referring to the curve for ¥/Q = 3/8 in
fig. 6, it is found that q/\rm = 1.26 for the s/b = -0.3. Since v, =Q/2p
we have, using the value of Q and b assigned for this illustration,

v, = 2.00 f£t/sec
Hence at s/b = =0.3, on the streamline in question we have
q = 1.26 v, = 2.52 ft/sec

35. The direction of the velocity vector will, of course, be
tangential to the streamline at the point in question. ;

36. An example of the application of the generalized solution shown
in fig. 5 to a specific assumed condition is given In Appendix A. ;

37. It is again pointed out that the anslysis from which the pre-
ceding results are derived is based on the assumption that pure, nonviscous,
potential flow cbtains, and that the jet showm in fig. % is bounded by'freé
streamlines with the regian.betﬁeen the free streamlines and the channel
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walls being filled with water at rest. In reality the region between the
free streamline and the channel wall is in eddying wotion, and the lateral
diffusion of the eddies as they move downstream causes the jet to spread
eventually to the full width of the channel. Under these circumstances, as
previously stated, the use of the results herein obtained to determine ve-
locity distributions at appreciable distances downstream from the channel
entrance would not be justified.

38. Since the velocity component normel to a streamline is zero, any
of the streamlines of fig. 5 may be replaced by a béunding surface without
in any way affecting the flow net. In this mammer a relatively wide
variety of possible channel-entrance conditions may be obtained from fig. 5.
Tn this connection it is obvious that the relative magnitudes of the mean
veloelty Vm in the chamnel, and V the velocity along the free streamline,
and also the veloecity of the jet at relatively large distances from the
channel entrance depend on the type of channel entrance assumed. For
example, with the chammel width being assumed egqual to the full width of
the two-dimensional orifice, Vm = 0.611 V as we have seen. However, if we
replace the free streamline with a fixed boundary, ¢ = b and Vm = V.
Obviously the values of q/Vm given in fig. 6 apply only to the case of the
channel shown in fig. 5.

39. Since the free streamlines approach agymptotically the line
y/b = 0.611, the chanmel formed by replacing the free streamlines by a
fixed boundary will not, strictly speaking, consist of a chammel with
straight parallel walls. However, it is spparent from fig. 5 that the
free streamlines approach the value y/b = 0.611 so rapidly for small values
of x/b that a channel consisting of straight parallel walls beyond
x/b = =1, and with the walls coinciding with the free streamlines f{rom
%/b = -1 to x/b = 0, may for all practical purposes be considered to
follow the free streamlines throughout their length.

40. The modification in the method of computing the velocity at any
point by replacing a streamline of fig. 5 by a fixed boundary is obvious.
For example, to continue the illustration of replacing the free streamline
with & bounding surface, we see from fig. 6 that ¢/V = 0.77 at the point
on the streamline ¥/Q = 3/8 for which s/b = -0.3.
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k1. Since V = LA Q/2b in this case, using the values of the
previous illustration, we have

V = 1000/500 = 2.0 ft/sec

q=0.77T V = 1.5k ft/sec

k2. If both boundaries of the flow are taken to be streamlines in
the interior of the jet, it is again evident from fig. 5 that a chamnel
with parallel straight walls for x/b < -1 and following the streamiines in
gquestion for s/b » «1 closely approximates the theoretical configuration,
and that agein as for the case of the free streamline being replaced by a
fixed wall, c¢ 1is to a close approximation equal to b , and likewise from
a consideration of fig. 6 it is evident that Vﬁ may with small error be
taken as V . Hence, values of q/v shown in fig. 6 may be used to obtain
the velocity at any point in the field of flow when the channel and en-
trance are such that the boundary walls consist of stralght parallel walls
up to %x/b = -1 and coincide with streamlines as x/b increases in the posi-
tive direction.

h3. Tt will be noted in fig. 5 that the stream functiom ¥ has been
expressed in terms of @ ; the discharge per unit depth of chammel. This
appears loglical since it is a characteristic of the stream function that
the difference between its value at any two points represents the volume
rate of flow per unit depth across any line Joining the two pointas. How-
ever, the stream function may be expressed egqually well in other forms.
For example, since @ = 2 Vo, and using equation 10, the lines of constant
¥ may be convenlently represented by #/Vb = ¥, where vy i8 a dimehsion-
less number.

Iong parallel jetties extending
into ocean from the channel entrance

i, This type of entrance condition corresponds essentially to the
two-dimensional form of Bords's mouthplece~-the longer the jettles, the
closer the correspondence.
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45, 1In fig. 7 is shown the geom~ y
etry of the channel entrance. The l
subscript = on some of the poimts is L
used to indicate that the point is -3 D
located at infinity. As before, @ T -i - i' -
is the discharge into the channel per b Mt 2L — ‘
wnit depth of channel, b is the S i
half-width of the chammel, and the
streamlines will be denoted in terms Fig. 7. Channmel entrance corre-
of the discharge per unit depth of S?"mi’}eitzgdl’iég iﬁi’;&iﬁiﬁjeﬁms
channel. Thus, the streamline along
the boundary B! , A', C! being ¥ = -Q/2 and the upper bounding stresmline
being ¥ = Q/2, the zero streamline is coincident with the X-8Xi8.

46. Milne-Thompson (page 283 of reference 6), proceeding by the
ususl methods of conformal transformations, derives the solution

v &z [t + m]a (17)

aw

w=22 105t -1 oWV (18)

where + is a complex parameter; b is the half-width of the chamnel as
shown in fig. T3 o 1s the coefficient of contraction; and V 1is, as be-
fore, the velocity along the free streamline. Obviously Q , the discharge
per wnit depth in the channel, is equivalent to the term 2 ¢ bV and
equation 18 becomes

-8 -1 8
W=Zlogt-1ig (19)
Prom which
W ix W
t=e® 2 2 ieaQ— (20)

Substituting the above relation in equation 17

= _ 1€ q
v G- le- +Ve + (21)
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Integrating this expression,

- - W [T
VZz%eQ +%eQ e @ +l+%log e® + Ve ® 1 lewen (22)

where A may be a complex constant. In order to evaluate A we have,
since in the development of egquation 18 the potential sﬂ was assumed to be
zero at A and A',

at z = 1ib, W= 1Q/2

at z = -ib, W = -1Q/2
The application of the first condition to equation 22 yields

A =1Vb - iQ + Q/x (23)
and the second condition gives

A = -iVb + 1Q + Q/x (24)

Hence A = Q/n and equation 22 becomes

oW o W P
Vz:%eQa—%eQ e§+1+%log eﬁ‘«r e® 11 +w+-§ (25)
From equations 23 and 24 1t is clear also that
Vb = Q (26)

and since Q = 2V, where ¢ is the half-width of the jet at infinity, 1t
Pollows that the coefficient of contraction '

o=c¢/b=1/2

in sccordsnce with the usuwal result.
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k7. In order to compute the streamlines from equation 25, it is
necessary to separate the real and imaginary parts of the expression. In
this connecticn the terms under the radical signs offer the only 41ffi-
culty. These terms may be expanded in a binomial serles as in the preced-
ing section, or they may be evaluated directly in the usual mamner as
follows. Consider first the term

23

e Q + 1
appearing in the right-hand side of equation 25. We may write

',Eﬁ. 29 ' 2
eQi 4+ 1 = (1+eQ ctaxss~«25§3E-)-t-:i.e(“1 sin-?—ﬁ

Q

Placing the right-hand member of this relation in polsy form, and rear-
ranging, we have for positive values of the stream function

1/2
2 Liae g%g
o 2np L
Q l+2eQ‘ccagﬁ+eQ‘ + 1 +e COH ——m &
e + 1 = Q . Q

2

oxp uag\/® 2xp
i 1+2chos-¢2’§+eQ *lweQ cos-%i

2
Since the term in parentheses under the radical will always be real, equa-

tion 27 may be used to determine the real and imaginary parts of

(27)

20
eQ'+l
snd we way write
29
e® s1l=a+ip (28)

vhere & and P represent the real and imeginary portions, respectively, “~
of the expression under the radical, as computed by means of equation 27.
8, In like manper it follows that



£
i[ae%siniga'ﬂeg casﬂ] (29)

Q
Tetting
£
g el W g9 o
@ =ae cos 7 - B e sin 3 (30)
and
=
ﬁlgaea ain%-{*ﬁeQ cos%li (31)

we have from equation 29
oW 209
Q V Q
e e +1l=qp +1 B, (32)

For the expression in brackets appearing in equation 25 we may write

E.) 2 =B gg
eQ«i- eQ +1aeQ cos-—’g-+a%i[e sin%t+g3]
and letting |
T
ozgwse cose@—w-ka (33)
and
g
B,=e® sin X 4 p (34)
2 Q
we have
kol 2
6Q+ eQ +3_za2+iBE (35)

from which
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W [ o
log ew.p e@, + = log 224»622‘&1608“1 2 . (36)
322*322
Bence, using equations 28, 32, and 36, we may write for equation 25
2
z:-;(%eQ cosg%*—+%al+%log‘F22+aaa+g+%+
25 o,
Q0 2%,8p 48 cogt ¥
ilwe sin =& *ﬁvﬂl*wws = 2+V’ (37)
«!»ﬁa
49, Separating reals and jmaginaries,
2np
Y B R A LA
x=—ze °°$Q+Wal+nvl°g a, + B, +%+ﬁ (38)
and
2np o,
yz%eq‘ sing-gf--t«%&l{»%eos-l +%¥;~ : (39)
%2_;_322

Expressing @ and ¥ in terms of Q, the rate of discharge per wnit
depth through the channel,

o |
By | (x0)
% =7y (1)

where 7y and 75 are pure mmbers. Using equations 26, 40, and 41, equations
38 and 39 become

2y

1 «a ¥, + 1
x € 1.1 2 2 1
== R cos 21@72 + == + > log 402 +32 + = (h2)
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ey
1 B
% = = sin e:tye 1 — -3-'- cos

1 %

50. The two relations above may be used to determine the equipo-
tential lines and streamlines of the flow pattern in the = plane. In
table 3, values of x/b and y/b corresponding to various values of ¥/Q and
7f/Q bave been computed; and in fig. 8 these data have been used to plot
the flow net f