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Introduction 

The U.S. Army Corps of Engineers and the California Department of Boat- 
ing and Waterways (CDBW) need reliable, long-term wave measurements for 
use in planning, designing, and operating coastal projects. Design wave condi- 
tions, usually expressed in terms of return intervals, are obtained through 
extremal analysis of wave histories. The confidence in these projects drops as 
the desired return interval exceeds about twice the length of the historical 
record. However, there is seldom time between the inception of a project and 
the point when design details are finalized to collect sufficiently long wave 
histories. A commitment is needed to obtain the required long-term measure- 
ments in advance of specific project planning. Wave hindcasts - which are 
made possible by long-term meteorological observations - such as the success- 
ful Wave Information Studies (WIS) conducted at the U.S. Army Engineer 
Waterways Experiment Station, Coastal Engineering Research Center, are 
another approach to this need, but wave measurements are still required for 
their validation. Another need for wave data is accurate quantification of 
conditions during specific events that result in damage to structures or delays 
in operations. Finally, laboratory and analytical research into the physics of 
wave generation, propagation, and transformation require measurements for 
calibration and verification. 

The Corps and the CDBW established the Coastal Data Information Program 
(CDIP) with the goal of collecting wave data at sufficient spatial and temporal 
density to meet these needs for the entire U.S. Pacific coastline. CDIP is a 
network of wave gauges operated by the University of California at San Diego 
Scripps Institution of Oceanography (Flick et al. 1993). To date, the density 
of wave observations is inadequate to sufficiently monitor the U.S. coastline, 
and any site selected for monitoring is a valuable addition to our knowledge. 
As the number of stations increases, it is imperative that locations be effi- 
ciently distributed to avoid collecting redundant data. 

The overall goal of the report is to provide preliminary guidance and rec- 
ommendations for the future study and implementation of regional wave moni- 
toring networks. The technical background upon which the report is based, 
and extensive references to past work, are given in O'Reilly (1991). The focus 
here is on potential engineering applications. 

It is important to note at the outset that the methodologies described in this 
report were developed to study relatively long-period waves (swell) arriving in 
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southern Califomia from distant storms. When appropriate, the discussion has 
been generalized to include locally generated seas. However, the fundamental 
considerations in optimizing a network of gauges to monitor swell versus local 
seas are believed to be quite distinct. Differences in swell wave conditions 
between a network's measurement stations are primarily due to variations in 
wave propagation over the regional bathymetry. For local seas, differences 
between stations are more likely to be dominated by variations in the regional 
wind field. A complete methodology for designing networks must eventually 
find a balance between these two competing criteria. 

Regional wave monitoring is defined here as the use of wave data collected 
at a limited number of locations to estimate wave conditions throughout an 
entire coastal region The term "wave conditions" refers to wave parameters 
needed for engineering design and planning (e.g. significant wave height, peak 
wave period, radiation stress, etc.). A "coastal region" is defined as an area 
where the directional spectra for incident swell can be approximated as homo- 
geneous along its deepwater boundary. Historically, shallow-water wave mea- 
surements have been collected primarily for site-specific purposes. Although 
data with regional applicability are obviously desirable, relatively little research 
has been done on the design of regional wave networks. 

Relating wave measurements (and/or hindcasts) to regional wave conditions 
requires some type of estimation theory. Possible estimation methods are 
discussed, including simple linear interpolation between adjacent gauges and 
sophisticated schemes using numerical wave propagation models. An objective 
technique for designing optimal wave gauge networks is also described, pro- 
viding a conceptual framework for addressing regional monitoring issues such 
as how many, where, and what types of measurement should be made. 

The authors strongly recommend that the utility of deepwater directional 
buoys, in combination with numerical wave models, be closely examined for 
regional wave monitoring along exposed coastlines with relatively simple 
bathymetry. Directional buoys are sometimes inadequate for coastal regions 
with complex bathymetry, and shallow-water measurements must be an ink- 
gral part of these networks. Optimal shallow-water gauge networks provide an 
objectively rigorous field test of regional wave prediction schemes on both 
simple and complex bathymetry. 
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2 Measurement and 
Estimation Theory 
Uncertainty 

Wave parameters of interest are defined as wave energy and the first four 
directional moments of wave spectra at locations outside the surf zone. This 
definition corresponds to what can be obtained directly from slope array or 
pitch-and-roll buoy measurements, and also to the level of detailed wave infor- 
mation needed for many engineering applications. 

Uncertainty in wave measurements is primarily statistical, caused by the 
limited duration of wave records and/or the nonstationarity of the wave field. 
Smaller errors arise from sensor inaccuracies, buoy calibration errors, etc. If 
an exact linear estimator theory related the various local measurements to the 
regional wave field, and the gauges were far enough apart to be statistically 
independent, then the regional estimates would theoretically have less statistical 
uncertainty than an individual measurement. For example, if the exact theory 
were a simple correlation scheme where the total energy at site B was the 
average of the energies at sites A and C, then the statistical uncertainty would 
actually be less at B than A or C. However, the estimation theories are far 
from exact, and quantifying the estimator errors is one of the more difficult 
aspects of designing a monitoring program. The many errors associated with 
estimating wave conditions at one location from measurements at other sites 
are usually understood only to the extent that these errors are larger than statis- 
tical and instrumental errors. The approach taken here is to assume that the 
estimation theory, whatever it may be, is exact for the purpose of designing a 
network. Field experiments are needed to quantify the errors and thus ulti- 
mately validate the estimation scheme. 

Chapter 2 Measurement and Estimation Theory Uncertainty 



3 Estimation Theories 

Methods for relating specific wave measurements to wave conditions at 
other sites can be crudely divided into the four categories discussed below. 

Interpolation Methods 

The simplest (and most costly) approach to regional monitoring is to instru- 
ment the entire coastline, with the spacing between gauges small enough such 
that wave conditions change only a small amount between gauges. In this 
case, wave conditions between gauges could, by definition, be accurately esti- 
mated through linear interpolation. Along broad reaches of open coastline the 
gauge spacing might be quite large, but near very complicated bathymetry, for 
example, near submarine canyons, this spacing could be reduced to less than 
100 m. In general, the number of required gauges is prohibitively large, and 
monitoring networks based on si~llple interpolation methods have very limited 
practical value. 

Correlation Methods 

A more general form of linear interpolation utilizes empirically determined 
linear correlations between wave parameters at different wave gauges, or 
between deep-ocean wave parameters and shallow-water conditions. Wave 
gauges at locations where wave conditions are highly correlated with other (not 
necessarily spatially adjacent) gauge sites can be eliminated from the network. 
However, linear correlation methods have not been successful on complex 
bathymetry (e.g. Southern California) because the relationship between wave 
conditions at two different sites, a very complicated function of the deep-ocean 
directional spectrum, cannot be well characterized by a linear equation with 
just a few variables, such as the peak wave frequency and direction of a deep- 
ocean wave event. With simple bathymetry and wave conditions (single, nar- 
row directional peaks), strong correlations might be found between directional 
buoy measurements in deep water and shallow-water array measurements. 
However, determining the correlations in this case is essentially equivalent to 
empirically (and at considerable expense) finding the refraction and shoaling 
coefficients of simple linear wave propagation theory. In addition, this 
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empirical approach requires that every location of interest be occupied by a 
gauge for a long duration in order to establish the correlations. Correlation 
methods may have some use in site-specific problems, but are not considered 
viable for regional wave monitoring in general. 

The motivation behind correlation methods is to avoid making long-term 
measurements of highly correlated, or redundant, wave information. In Chap 
ter 5, it will be shown how numerical wave models, linear programming, and 
optimization techniques can be combined to select gauge locations which mini- 
mize redundancy. 

Numerical Wave Models 

Numerical wave propagation models can be invaluable in the design and 
operation of regional monitoring networks. A straightforward example is using 
a single directional buoy in deep water to initialize a wave propagation model 
that predicts the wave field at shoreward locations. If the wave model were 
exact and the buoy measurements completely defined the deepwater directional 
wave spectrum, then the coastal wave field could be accurately estimated with 
no shallow-water measurements at all. However, neither assumption is in 
general satisfied. The wave models rely on many simplifying assumptions and 
the conditions under which the waves propagate (i.e. bathymetry, currents) are 
imprecisely known (see Chapter 2). Furthemlore, pitch-and-roll buoys and 
two-component slope arrays are fundamentally low-resolution instruments 
relative to multi-element arrays. An infinite number of directional spectra, 
some of them markedly different in shape and equally plausible, can exactly fit 
the same slope data. 

Despite these limitations, various methods for assigning directional distribu- 
tions to pitch-and-roll data (e.g. Maximu111 Likelihood Method, MLM, or Max- 
imum Entropy Method, MEM), in conjunction with available wave propagation 
models, may prove adequate for some regions of U.S. coastline. The South- 
em California Wave Experiment, conducted over the winter of 1991-1992, was 
designed to test this approach. Two linear wave propagation ~nodels (O'Reilly 
and Guza 1992) were initialized with MEM estimates of the offshore spectrum 
obtained from deepwater directional wave gauges within the Bight. 

The buoy-wave propagation models provide good predictions of Bight-wide 
wave conditions for the more open sections of coastline. Simple bathymetry 
reduces the sensitivity of coastal wave conditions to details of the offshore 
directional spectrum, and comparisons with shallow-water measurements veri- 
fied the utility of this straightforward monitoring approach in these cases. At 
the most highly sheltered and topographically co~nplex shallow-water sites, the 
limitations of this approach were evident. 

The combined buoy-wave propagation estimator is relatively cheap because 
a single buoy serves a relatively large stretch of coastline. The spacing of the 
offshore buoys should be such that the deepwater directional spectrum varies 
slowly between them. This spacing would presumably be some fraction of the 
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length scale of typical storm events, and is best addressed through historical 
data, from hindcast data, such as provided by the WIS, and future field experi- 
ments. The buoy-wave propagation monitoring scheme should be extensively 
tested, and concurrent data from offshore National Oceanic and Atmospheric 
Administration (NOAA) buoys and shallow-water stations may already exist 
for many sections of the U.S. coastline. Where directional buoys prove suffi- 
cient, shallow-water instrumentation would be used prinlarily for site-specific 
problems requiring exceptionally high accuracy, or for monitoring local seas 
that are generated between the buoy and the coast. 

In addition to propagating waves from offshore to onshore, numerical wave 
models can also be used to "back out" shallow-water directional nleasurements 
to deep water. These deepwater directional spectra can in turn be used to 
predict shallow-water conditions elsewhere, as described above. At first glance 
a shallow-water directional buoy has value equal to a deepwater buoy. How- 
ever, this is not the case because refraction columnates low-frequency deep- 
ocean waves to a narrow band nearly normal to the beach in shallow water. 
Swell with a relatively broad directional spread in deep water is much nar- 
rower in shallow water, and detail in the shallow spectrum cannot be well 
resolved with a slope array or pitch-and-roll buoy. Owing to this resolution 
problem alone, there is greater uncertainty in deepwater directional spectra 
obtained by backing out shallow-water data than in a directly measured deep  
water spectra. A single shallow-water directional buoy or slope array is there- 
fore less desirable for estimating deepwater, incident wave conditions than 
direct deepwater measurements, particularly for long-period swell. 

Short-period waves are usually characterized by a broad directional distribu- 
tion and undergo less refraction than low-frequency waves in the same water 
depth. Therefore, directional buoys in coastal waters may resolve directional 
distributions of seas better than swell. However, generation by local winds can 
cause the energy of these high-frequency waves to have much more rapid 
spatial variations in deep waters compared to the lower frequencies. Including 
high-frequency waves in a regional network requires both n~onitoring (or mod- 
eling) of the spatially variable wind field and the inclusion of source terms in 
the wave propagation model. This is beyond the scope of the present report. 

Inverse Methods 

Numerical simulations with spectral wave models indicate that, with com- 
plicated bathymetry, estimates of coastal wave conditions can be very sensitive 
to enors in the shape of the deepwater directional spectrum. In this case, an 
offshore pitch-and-roll buoy is believed to be inadequate as a sole source of 
input to wave models (e.g., O'Reilly & Guza 1991). Routinely available spec- 
tral hindcasts also lack the required resolution for many coastal engineering 
applications. An alternative approach described here is to infer the deep-ocean 
directional spectrum from wave data collected in both deep and shallow water. 
Properly placed shallow-water gauges, used in conjunction with wave propaga- 
tion models and (ideally) an offshore directional buoy, can significantly 
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improve regional wave estimates based on a single directional buoy (Chap- 
ter 3, section titled "Numerical Wave Models"). 

Wave measurements, even nondirectional measurements (i.e., energy), at 
specifically chosen locations, can constrain the possible shape of the incident 
deepwater directional spectrum. If an idealized coastal site were exposed to 
wave energy from a single, narrow range of deep-ocean directions and effec- 
tively sheltered from other directions (for example, a gauge situated shoreward 
of a gap between two islands), then the energy observed at that site would 
specify the deep-ocean directional spectra energy in the exposed directional 
sector. Observations from many such partially sheltered shallow gauges, each 
exposed to a different deep-ocean directional sector, could clearly be used to 
estimate the deep-ocean directional spectra. The governing assumption is that 
bottom effects are of highest priority and other effects modestly affect the 
spectrum. The collection of sheltered sites, each measuring energy alone, can 
be used to form a so-called "incoherent directional array." Directional wave 
information follows not from the phase information between closely spaced 
sensors (i.e. a conventional "coherent array"), but from the spatial variation of 
energy among the many spatially separated energy gauges. Because the effects 
of real bathymetry are more complex than the idealized "gaps" discussed 
above, estimating the deepocean directional spectrum from shallow-water 
measurements is vastly more complicated. So-called "inverse methods," devel- 
oped for conceptually similar problems in geophysics and other disciplines, 
provide the necessary mathematical framework. Given a numerical wave prop- 
agation model, and a set of wave measurements (either directional and/or non- 
directional) obtained in either shallow water alone or in both shallow and deep 
water, the inverse method described below yields an estimated deepwater spec- 
trum that is "consistent" with these observations. Thus, wave monitoring 
through inverse methods ideally includes both a deepwater directional buoy 
and shallow-water gauges. 

An objective means of estimating the "information content" of a specific 
network of gauge locations is an integral part of the inverse approach to wave 
monitoring. Inverse methods can thus be used not only to extract regional 
wave information from a given network, but also to design networks. Com- 
bined with an optimization technique known as simulated annealing, inverse 
methods can be used to determine how Inany gauges are necessary to define 
specific regional wave parameters, and to select locations that maximize the 
amount of useful (i.e. non-redundant) wave data collected with a fixed number 
of gauges. The inverse approach thus quantitatively links network design and 
performance. 
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4 Southern California: A 
Case Study of the lnverse 
Method 

This chapter describes how inverse methods and an existing 10-year data- 
base of measurements by the CDIP in the Southern California Bight (Figure 1) 
can be used to estimate the deep-ocean directional spectra. Estimated peak 
directions are compared to hindcast directions for a few example wave events. 
These estimated offshore spectra could in turn be used as input to the wave 
models to estimate extreme wave conditions throughout the Bight during the 
last decade. This example illustrates how inverse methods can be used with an 
existing database of wave measurements to estimate historical wave conditions 
at unmeasured sites. In addition, a method for designing optimal networks for 
inverse modeling is presented. Data from an optimal network, recently 
deployed in Southern California, are presently being used to test the inverse 
method of designing and using regional wave networks (O'Reilly & Guza, in 
preparation). 

The inverse method of network design requires a wave propagation model. 
The two models used here, spectral refraction (R Model, Longuet-Higgins 
(1957)) and spectral refraction-diffraction (RD model, Kirby (1986)), are fully 
described in O'Reilly & Guza (1992). Both models assume that the deep- 
ocean spectrum is spatially homogeneous outside the Bight, and that there is 
no local wave generation or dissipation. Thus, the models are limited to the 
estimation of Bight-wide wave conditions associated with swell from distant 
storms. 

Linear Programming (Non-Negative Least 
Squares) 

Mathematical techniques, broadly defined as inverse methods, can be used 
with the wave models and data collected in the Bight to estimate deep-ocean 
directional spectra (see O'Reilly (1991) for details). The term "forward 
model" will refer here to either the R (refraction) or RD (refraction-diffraction) 
wave model. For a given wave frequency, the forward model yields a linear 
relationship between the deep-ocean directional spectrum So and the wave 
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Figure 1. Shallow-water bathymetry of the Southern California Bight 

measurements d (energy or directional moments, for example), which can be 
expressed as a linear functional of So: 

G is derived from the forward model, and is essentially a shoaling-refraction- 
diffraction transfer function (O'Reilly & Guza 1992). 

Further simplification reduces Equation 1 to a linear programming problem. 
Instead of seeking a function form, the solution So is discretized into a finite 
number of frequency-directional bins, each with constant wave energy density. 
The problem is then reduced to the matrix form 
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where 

bM = the observations 

x~ = the discretized deep ocean spectrum, at a fixed frequency 

A = M by N matrix composed of the forward nlodel energy or direc- 
tional transfer functions for each wave measurement 

AU = the forward model estimate of some wave parameter, say energy, 
at observation site i due to a unit amount of wave energy arriving 
from the deep-ocean direction bin j 

A numerical program well-suited for this particular inverse problem, NNLS 
(Non-Negative Least Squares, Lawson and Hatzsotz (1974)), finds the non- 
negative deep-ocean spectrum that provides the best least squares fit to the 
observations. 

The length M of the data vector b is the number of individual observations 
available in the Bight at a given time. The length N of the solution vector x is 
the number of directional bins for the discretized deepocean spectrum. A 
frequency bandwidth of .OlHz and a directional bandwidth of 5 deg are used 
here, and the range of possible incident deep-ocean wave directions is assumed 
to be between 160 deg and 315 deg (N = 36). Since the forward model is 
linear, there is no transfer of energy between frequencies, and each .Ol-Hz 
band can be treated as a separate inverse problem. 

When using historical wave observations, the inverse probIem is often 
poorly constrained (i.e. M << 36). To ensure a unique solution, an a priori 
smoothness constraint is added to the linear programming problem by specify- 
ing that the difference between neighboring directional bands equals zero. The 
kernel A and the observations b are expanded to include these additional 
constraints: 

A ~ + j j  = W d ;  A ~ + j j + l  = -wd; bM+j = 0, for j = 1, N-1 

where wd is a weighing factor that forces the NNLS routine toward direction- 
ally smoother solutions as wd increases, and the remaining elements in each 
row are set to zero. This results in a total of M + N - 1 data constraints and 
the problem is over-determined if M>1. The NNLS routine finds the solution 
that results in the best least squares fit to the data and smoothness constraint, 
and wd controls the relative penalty of observation misfits versus lack of 
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smoothness. The use of a directional smoothness constraint does not eliminate 
the possibility of narrow solutions. Inverse model si~nulations with both nar- 
row and broad spectra suggest that a properly weighted smoothness constraint 
can improve the overall inverse model performance without seriously degrad- 
ing the solutions for narrow spectra. These simulations are discussed further 
in the section of this chapter titled "A Qualitative Comparison of Inverse 
Estimates and Deep-Ocean Wave Hindcasts." 

Modeling Nonstationary Wave Events 

The time required for wave energy to propagate between spatially separated 
wave measurement stations in the Southern California Bight (Figure 1) can be 
as long as 6 hr for a wave frequency of .05 Hz and 14 hr for .lo-Hz waves. 
For a given frequency band, the time lag between any two stations theoreti- 
cally depends on the wave direction, and observed time lags are qualitatively 
consistent with expectations. For example, westerly storm wave energy arrives 
and wanes at the offshore gauge before the nearshore gauges. Observed time 
lags at the beginning and end of large wave events thus contain additional 
information about the wave directions in deep water. 

Travel times between observation sites and temporal nonstationarity in the 
deep ocean spectrum are incorporated into the inverse model by simultaneously 
solving for many temporally sequential directional spectra. A wave measure- 
ment at a specific site and a given frequency band is now linearly related to 
different directional bins of the deepocean spectra at different times. Time 
lags for each frequency-directional combination, at each site, are approximated 
using simple geometry as illustrated for waves from the west (270 deg) and a 
deep-ocean location at 33 deg, 120 deg W (Figure 2). For a given wave fre- 
quency, the distance of wave propagation d,, between the deep-ocean site and 
an observation station is divided by the deepwater group velocity to get a time 
lag estimate (rounded to the nearest hour for the discretized inverse problem). 

The time lag approximation is somewhat crude since the distance dp is the 
shortest path the waves could take (and often an iinpossible one due to island 
blocking). Island sheltering generally results in multiple, less direct, amvals 
from a single incident direction. In addition, the decrease in wave speed with 
depth is not accounted for. As a result, there is a bias towards underestimating 
lag times. A more accurate time lag approximation could be made using the 
travel time of back-refracted rays in the R model. However, a more sophisti- 
cated estimation scheme is pointless here because the lags are discretized to 
the nearest hour and wave data are typically collected 3-6 hr apart. 

The nonstationary inverse problem can also be expressed as a linear 
functional 
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Figure 2. Geometry for estimating the distance between two points in order to calculate wave 
propagation time lags. Incident wave direction is 270 deg (i.e. from the west) 

where d, G and So now have the additional dimension of time. The kernel A 
of the discretized problem (Equation 2) now relates the forward model estimate 
at one observation location to deep-ocean spectra over a range of hourly time 
bins. The dimensions of A, excluding any smoothness constraint, increase 
from M by N to L by W, where k is the number of hourly deep-ocean spectra 
solved for simultaneously and L is the number of wave observations made 
within that time period. Ai,  hj is the contribution of a unit amount of wave 
energy from deep-ocean direction j, at hour h,  to the wave observation i. 
Unless hourly wave observations are made, the addition of the time domain 
makes the problem even less data-constrained than the stationary wave energy 
case. However, the inverse model can be constrained to have smooth solutions 
in time (with a corresponding weight, w,) as well as direction. A is a large, 
sparse matrix when both smoothness constraints are included. For example, 
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solving for a 36-hr time period of incident wave spectra results in roughly a 
2,600 by 1,300 matrix inversion problem. 

Observations from the Coastal Data Information 
Program 

The Coastal Data Information Program has been collecting wave data in the 
Southern California Bight since the late 1970's [Seymour, Sessions, atld Castel 
19851. These data have been collected at numerous locations throughout the 
Bight using either pressure sensors or Waverider (nondirectional) buoys (Fig- 
ure 3). The shallow-water stations are generally at a depth of 10 m and often 
provide directional information using a slope array of four pressure sensors. 
The majority of the slope array data were collected at 6-hr intervals, and the 
buoy data every 3 hr, with each data record about 17 min long at a 1-Hz sam- 
ple rate. Recently, the record lengths have been increased to a sample size of 
34 min or more, and the 6-hr interval between sampling periods has been 
reduced in many cases. Over the last decade, NOAA has also operated several 
directional (pitch-and-roll) and nondirectional buoys in the region (Figure 3). 

The Waverider buoys and single pressure sensors provide wave energy 
information only (i.e., one observation) 

while the shallow-water slope arrays and pitch-and-roll buoys measure four 
additional directional moments (four "more observations") of the local wave 
spectrum (Longuet-Higgins et al. 1963). 

2x 

w e )  cos 9 dB 
0 

2n p w e )  cos 20  do  
0 
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1 IMPERIAL BEACH ARRAY 
0 2 MISSION BAY ARRAY 
0 3 SCRIPPS PIER S.P. 
4 DEL MAR ARRAY 

0 5 OCEANSIDE ARRAY 
6 SAN CLEMENTE ARRAY 
7 SUNSET BEACH ARRAY 
8 CHANNEL ISLANDS S.P. 
9 SANTA BARBARA (2) 

10 POINT ARGUELLO BUOY 
0 1 1 MISSION BAY BUOY 

12 NOAA BUOY 46024 
*I3 BEGG ROCK BUOY 
14 SAN PEDRO CHANNEL BUOY 
15 NOAA BUOY 46025 
16 SANTA MONICA BAY BUOY 
17 SANTA CRUZ ISLAND BUOY 
18 POINT MUGU BUOY 

0 1  9 NOAA BUOY 46023 
20 POINT ARGUELLO BUOY 

021 HARVEST PLATFORM 
0 = PRESENTLY OPERATING 

Figure 3. Southern Callornia wave observation stations, 1978 to present 
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Data used in the present study were processed from CDIP archive tapes and an 
estimation technique described by Herbers and Guza (1989) was used to calcu- 
late directional moments for the slope arrays. 

A Qualitative Comparison of lnverse Estimates 
and Deep-Ocean Wave Hindcasts 

Inverse model estimates of deep-ocean wave spectra, based on CDIP and 
NOAA wave data, were compared to deep-ocean wave hindcasts of a peak 
period and peak wave direction produced by Pacific Weather Analysis 
(U.S. Army Corps of Engineers 1988).' The peak directions of these hind- 
casts are fairly accurate since weather patterns that generate large waves are 
usually well-tracked. Two energetic Northern Hemisphere events (January 
1985 and November 1989), and a single Southern Hemisphere swell event 
(August 1984) were examined. The CDIP and NOAA observation locations 
used in the inverse model are listed in Table 1 for each wave event. Three 
CDIP locations, Imperial Beach, Del Mar, and Scripps Pier, were excluded 
because of suspected inaccuracy and/or severe irregularity in the bathymetry 
grid. 

Simulations were performed to select the directional smoothness weight wd 
to use in the actual inverse model calculations. For simplicity, the inverse 
simulations were based on stationary test spectra. These "true" spectra were 
used to create "data" using a forward wave model and chi-square statistical 
noise (20 degrees of freedom) was then added to the data to simulate 17-min 
wave records with the appropriate resolution. The simulated data were in turn 
used in the inverse model to estimate the original test spectra. The simulations 
were performed for the ,055- to .065-Hz frequency band and with the observa- 
tion stations that were operating during each event (Table 1). 

The overall objective is to use inverse methods along with a forward wave 
model to make Bight-wide wave estimates. To select a directional smoothness 
weight, a measure of the "goodness" of the inverse solutions, using Bight-wide 
estimates of wave heights, was defined. For each test case, the true and esti- 
mated deep-ocean spectra were used with the RD model to predict the wave 
height (H,,,,) at roughly 4,000 locations spaced 3,200 In apart across the 
Bight. The root mean square error between the true and estimated wave 
heights was then calculated for each of four directional distributions (Figure 4). 
Thirty-six different simulations were perfonned by moving the center of the 
distribution in 5-deg increments from 160 deg to 315 deg. There were 50 
different statistical realizations for each central direction, resulting in about 
1,500 si~nulations at each of the 4,000 locations. The resulting H,, errors 
were averaged to obtain a single representative value for each of the four 
directional distributions and a range of smoothness weights. 

Personal Communication, June, 1990, Nick Graham, Assistant Research Meteorologist, 
Scripps Institution of Oceanography, La Jolla, CA. 
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The H,, errors are plotted as a function 
of the smoothness weight wd in Figure 5. 
Directionally broad test spectra produced 
lower H,, errors and benefitted the most 
from the smoothness constraint. In addition, 
wave estimates for the narrow directional 
spectra (solid line, Figure 5) were not 
seriously degraded by a smoothness con- 
straint large enough to be useful for broader 
spectra. The inverse estimates based on the 
January, 1985 wave observation network 
were more unstable than the other two 
examples, and improved to an Hrm error 
value similar to the August 1984 estimates 
when wd I .01. Based on the simulations, 
wd = .I was chosen for use with the field 
data. In addition to the directional weight, a 
temporal smoothness weight of 1.0 was 
used. This is large enough to suppress large 
fluctuations in the inverse estimates on 
unrealistically rapid times of 1-2 hr, but 
small enough to not influence similar 
changes over 6-12 hr. 

Table 1 
Observation Locations for Inverse 
Estimates (See Location Map, 

January 17,1985 

Date 

August 1984 

January 1985 

November 1989 

Northern Hemisphere winter storms typi- 
cally form in the Northwest Pacific and 

travel eastward towards the Gulf of Alaska. Occasionally a storm takes a more 
southerly route towards the Hawaiian Islands and generates waves approaching 
the Southern California Bight from a more westerly direction. This was the 
case for a midJanuary storm in 1985. 

Location 

Oceanside Array 

San Clemente Array 

Santa Cruz lsland Buoy 

Begg Rock Buoy 

Mission Bay Buoy 

Oceanside Array 

San Clemente Array 

Santa Cruz Island Buoy 

Begg Rock Buoy 

Mission Bay Buoy 

Mission Bay Array 

Oceanside Array 

Inverse estimates of the deepocean directional spectra were made using the 
R model and the wave stations listed in Table 1 over a 36-hr time period start- 
ing at midnight on the 16th of January. The R model was chosen because its 
directional transfer functions could be used with the CDIP slope array data. 
Not including the smoothness constraints, there were a total of 79 observations 
of wave energies or directional moments to constrain the solution in 36 direc- 
tion bins over 36 hr, or 1,296 direction-time bins. Figure 6 shows the non- 
stationary inverse model estiniates of deep-ocean directional spectra, for the 
.055-.065 Hz frequency band (corresponding to the 17-sec peak period of the 
hindcast). The inverse estimate of the directional spectrum is consistent with 
the hindcast peak direction (267 deg) for this wave event. The peak direction 
for the .045- to 55-Hz frequency bank (Figure 7) starts at 260 deg and moves 
slightly northward to roughly 265-270 deg over a 20-hr period. This lower 
frequency wave energy arrives before the .06-Hz energy in Figure 6, typical of 
dispersive arrivals (lower wave frequencies travel faster) from distant storms. 

Harvest Platform 
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Figure 4. Test spectra for H,,, error simulations 
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Figure 5. H,, error as a function of directional smoothness weight wd. Simulations assume 
that the deep-ocean spectrum is stationary 



Figure 6. Inverse model estimate of the deep-ocean directional spectrum for a 36-hr time 
period beginning on January 17, 1985. The wave frequency band is .055 to 
.065 Hz. Contour levels of wave energy density are every 1,000 cm2/Hz0. The 
dashed line represents the peak direction of the Pacific Weather Analysis wave 
hindcast 
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Figure 7. lnverse model estimate of the deep-ocean directional spectrum for a 36-hr time 
period beginning on January 17, 1985. The wave frequency band is .045 to 
.055 Hz. Coutour levels of wave energy density are every 1,000 cm2/~z0 
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On October 29-30, 1989, an exceptionally powerful storm developed in the 
far Northwestern Pacific with wave energy reaching Southern California on the 
3rd of November. This storm was unusual because the wave frequencies con- 
taining the greatest amount of energy were .05 Hz and lower. A relatively 
large number of wave observations were available for this event, and six CDIP 
stations and two NOAA buoys (Table 1) were used in the 36-hr inverse esti- 
mate for the .045- to .055-Hz frequency band (Figure 8). The R model trans- 
fer functions were used with the CDIP data and the RD model energy transfer 
functions for the NOAA buoys. The peak direction in the inverse estimate was 
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Figure 8. Inverse model estimate of the deep ocean directional spectrum for a 36-hr time 
period beginning on November 3, 1989. The wave frequency band is .045 to 
.055 Hz. Contour levels of wave energy density are every 3,000 cm2/~z0. The 
dashed line represents the peak direction of the Pacific Weather Analysis wave 
hindcast 
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295 deg (recall that the deep ocean spectrum estimate was discretized into 
5-deg bins), which is consistent with the Pacific Weather Analysis hindcast of 
293 deg. 

August 23,1984 

A less successful application of the inverse model was performed for a 
large Southern Hemisphere wave event in August, 1984, where the Pacific 
Weather Analysis hindcast estimated a peak period of 17-18 sec and direction 
of 198 deg. The R model was used in the inverse problem along with four 
observation stations (Table 1). The inverse estimate for the .055- to .065-Hz 
frequency band is shown with the hindcast peak direction in Figure 9. The 
inverse model is inconsistent with the hindcast in this instance, generally 
showing bimodal directional spectra rather than a single peak. 

Southern Hemisphere swells are generally assumed to be directionally nar- 
row, and narrow spectra are the most difficult to accurately simulate with the 
forward models (O'Reilly and Guza 1992). Thus, it is interesting to explore 
whether or not the inconsistencies between the inverse model and the hindcast 
are primarily due to forward model errors. A different inverse estimate, one 
that assumes a priori that the incident spectra are directionally narrow, was 
also made using these wave observations. Instead of allowing the wave energy 
to be distributed across aLl 36 of the 5-deg deep-ocean directional bands, 
36 separate inverse problems were solved. In each case the incident energy 
was constrained to a single 5-deg directional band for the 36-hr time period 
with the same temporal smoothness constraint nj, = 1. The resulting misfit 
between observations and estimates (Equation 3), a measure of how well the 
NNLS solutions fit the data, are plotted versus incident direction in Figure 10, 
upper panel. The overall minimum misfit, for the direction of 205 deg, is 
657cm4 (compared to 528 cm4 in the original inverse solution). The nonlinear 
inverse problem, with only a single directional bin, is actually over-determined 
by the data alone, and if the smoothness constraint is dropped altogether (Fig- 
ure 10, lower panel), then the mininlurn misfit is 247cm4, for the direction 
195 deg. Therefore, the inverse estimates (both with and without w,) are quite 
consistent with the hindcast direction (198 deg), and the misfits are not much 
larger than in the full-nonstationary problem. 

This analysis suggests that the forward model is not inaccurate, but rather 
the data set is fundamentally inadequate to define the offshore directional spec- 
trum without rather drastic a priori assumptions (e.g., the wave field is direc- 
tionally unimodal). Although some results are encouraging, the simple 
smoothness constraints in the full nonstationary inverse problem are inadequate 
in some cases, failing to even resolve the peak direction of a wave event. 
More information is needed to properly constrain the problem, either through 
additional observation, or a priori assumptions. 
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Figure 9. Inverse model estimate of the deep ocean directional spectrum for a 36-hr time 
period beginning at noon on August 22, 1984. The wave frequenc band is .055 to Y .065 Hz. Contour levels of wave energy density are every 500 cm /Hz0 

The hindcast information has been used here to check for inconsistencies in 
the inverse estimates. A hindcast could be used more directly in the inverse 
model, as a "preferred direction" constraint, for example, and spectral hindcast 
models could specify preferred shapes for the deep-ocean spectra. That is, a 
hindcast can be treated as "data" in the inverse model. An inverse estimate 
combining observations and hindcasts would presumably work best for extreme 
wave events since the location of distant sources of large waves is often well- 
known. 
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Figure 10. Minimum two-norm, or least square error, for the modified (a priori narrow incident 
spectra) inverse model. Each black dot represents the minimum two-norm for a 
5-deg incident directional spectrum in the .055- to .065-Hz frequency band. The 
dashed line represents the peak direction of the Pacific Weather Analysis wave 
hindcast 
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5 Designing an Optimal 

Network Optimization by Simulated Annealing 

Determining the deployment locations for a finite number of wave measure- 
ment instruments, in order to estimate wave conditions throughout the Bight, is 
a large combinatorial maximization problem. The quantity to be maximized is 
an objective function characterizing network performance. The number of 
possible network configurations in the Bight is enonnous and the problem does 
not lend itself easily to simple optimization techniques. 

Barth and Wunsch (1990) (hereafter B&W) use a method known as simu- 
lated annealing to design instrument arrays for acoustic tomography experi- 
ments. The present problem is analogous to theirs in almost every way, and is 
expressed in the same standard inverse form (Equation 2). The annealing 
method will be outlined only briefly since the objective function used here is 
that suggested by B&W, as is the general n~ethodology for network selection. 

Simulated annealing has its roots in thermodynamics and the technique of 
slowly cooling molten solids to form the most crystalline, lowest energy state 
possible. In order to achieve this, the cooling melt may have to go to higher 
energy states at various times, while still maintaining thernlal equilibrium. The 
likelihood of a higher energy excursion of a given size AE decreases with 
temperature T and is governed by the Boltzmann probability distribution, 

Metropolis et al. (1953) first incorporated Equation 6 into numerical cal- 
culations and the technique has more recently been used to solve the so-called 
traveling salesman problem (Press et al. 1986). In simulated annealing prob- 
lems, "temperature" becomes a parameter that controls how slowly the proba- 
bility distribution function changes. In addition, AE refers to the difference in 
objective function values for two network configurations, one representing the 
current state of the system and the second being another possible configura- 
tion. Thus, new configurations with worse 0bjectiv.e function values are less 
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likely to be accepted at lower temperatures. Configurations with lower objec- 
tive function values are always accepted. 

In simulated annealing, a random combination of M locations is selected 
and an initial objective function value is calculated. The network is then mod- 
ified or "jumped" to a different configuration in a random way. A new objec- 
tive function value is calculated for this network and the new configuration is 
accepted or rejected with a probability given by Equation 6. To change the 
network configuration, a wave station in the network is randomly selected and 
moved to another site that is also randomly chosen. However, the maximum 
distance of this random move decreases with the system's temperature. This 
iterative process continues for a chosen rate of decreasing temperature, which 
is referred to as the annealing schedule, until no further configurations are 
accepted (based on specified iteration and temperature thresholds). 

B&W suggest an objective function based on the singular value decomposi- 
tion of the kernel A in Equation 2. Small singular values correspond to ele- 
ments of the inverse solution x that will be seriously degraded by forward 
model errors in A and statistical errors in b. By maximizing the smallest of 
the singular values of A, the overall sensitivity of the inverse problern to these 
errors is minimized. 

To guarantee reaching a global minimum (or a global nlaxirnum if the 
minus sign in the exponent in Equation 6 is dropped) the rate at which the 
temperature can be decreased is extremely slow and often computationally 
unrealistic. However, investigators have found that much faster annealing 
schedules can be used in many cases, with results that are at least near-optimal 
if not the global minimum. Because simulated annealing cannot always p a r -  
antee convergence to a global minimum, its use as a true optimization tech- 
nique is somewhat controversial. At the very least, simulated annealing can 
provide good solutions to combinatorial optimization problems where one's 
intuition is normally quite limited. Whether or not the solution is truly optimal 
is a question of theoretical interest; however, in practice, it is unlikely that the 
objective function to be minimized will embody all aspects of the actual prob- 
lem in the first place. Thus, for large optimization problems involving physi- 
cal processes, the absolutely optimal solution may be sacrificed for a very 
good one that can be obtained at a fraction of the computational expense. 

Optimized configurations, for networks of various sizes, are shown in Fig- 
ures 11-12. In each case A did not include sinoothness constraints and the Nth 
smallest singular value was maximized, where N is the number of stations in 
the network. The optimized locations are based on the energy transfer func- 
tions calculated by the stationary RD wave model for the .055- to .065-Hz fre- 
quency band. Approximately 17,000 sites were considered in the annealing 
problem, representing locations that were 1,600 m apart across the entire 
Bight. Note that several network sites are clustered together on the northwest 
edge of San Nicolas Island (Figure 1) in several cases (Figure 11). These sites 
are actually a few kilometers apart and lie along a spatial energy gradient 
associated with intense wave focusing. It appears that these locations were 
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chosen in an attempt to resolve wave energy from the northwest. The majority 
of the Bight is sheltered from these wave directions, hence the selection of 
sites outside the islands. Interestingly, the smaller networks seem to prefer 
larger energy transfer functions than the networks with more elements, result- 
ing in more observation sites in shallow water for the sparse networks. The 
reasons for this are unclear at the present time. 

The singular values for the 8-, 12-, and 18-station optimal arrays are shown 
in Figure 13. Also shown are the singular values for the networks used in the 
three wave events examined in the previous section. Although these wave 
events were estimated using only 4-8 stations, several of the stations provided 
directional moment measurements, which resulted in 4 additional model con- 
straints in each case. The August 84, January 85, and November 89 events 
had a total of 12, 13, and 20 data constraints, respectively. The sizes of the 
singular values associated with the historical data networks are much smaller 
than those for the more optimal design. This indicates that there is a signifi- 
cant amount of redundancy in the existing wave data for these events. There 
is a fundamental trade-off in discrete inverse problems between solution reso- 
lution and stability. Relatively high directional resolution was sought here 
(5 deg), with what is in fact a minimal amount of wave measurement data, in 
the hope that the smoothness constraint would provide enough additional infor- 
mation to stabilize the solutions in the presence of model and data errors. 
However, this was clearly unsuccessful for the Southern Hemisphere swell in 
the section titled "August 23, 1984" in Chapter 4 (pages 22-24). 

Simulations similar to those used in the previous section to select a direc- 
tional smoothness constraint were also performed using optimal networks. 
Bight-wide Hrm error estimates, for the same test spectra of Figure 4, were 
calculated using the optimized 8-, 12-, and 18-station networks and various 
values of wd (Figure 14). The smoothness constraint had less effect on the 
optimized networks, and the H , ,  errors were smaller than those for the equi- 
valent historical data networks (Figure 5). 

The 12-station network was also used to examine changes in the H ,  as a 
function of forward model and statistical wave measurement errors (Figure 15, 
upper panel). As was done previously, chi-square errors were added to the 
simulated data before making the inverse estimates. It is difficult to character- 
ize the type of forward model errors to be expected; therefore, the chi-square 
uncertainty is assumed to represent both model and measurement errors for the 
purpose of the present discussion. As would be expected, the H,, error 
increases with decreased degrees of freedom. In addition, the size of the 
inverse model errors increases more rapidly at low degrees of freedom (40). 
Finally, H ,  errors are calculated as a function of optimized network size 
(Figure 15, lower panel). The narrow test spectrum continues to result in the 
largest H,,, errors and there is a sharp increase in inverse errors between the 
5- and 8-station optimized networks. 
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Figure 13. Singular values from the decomposition of the data kernels A for the historical wave 
networks and three optimized networks. Historical data kernels are based on the R 
model, and the optimized networks used the RD model. All data kernels are for 
stationary wave events in the .055- to .065-Hz frequency band 

Discussion 

In Chapter 4, a method was described to estimate nonstationary deep-ocean 
directional wave spectra, that in turn could be used to predict wave energy and 
directional spectra throughout the Southern California Bight. These deep- 
ocean estimates are made using observations of wave energy and directional 
moments within the Bight, along with linear programming techniques. 

Examples of this inverse estimation method were presented using historical 
wave data collected by CDIP and NOAA for several significant wave events. 
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Figure 14. H,,, error as a function of smoothness weight wdfor the 8-, 12-, and 18-station 
networks. Simulations assume the measurements have 20 degrees of freedom 
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Solutions were consistent with wave hindcasts in two cases, but not for the 
Southern Hemisphere swell event. A second estimation method, which 
assumed a priori that the incident spectrum was narrow, was also applied to 
the southern swell, and produced much better results. This suggested that, 
although narrow incident spectra are the most difficult for the forward models 
to simulate, the R model was reasonably consistent with the hindcast and 
observations in this instance, and more infonilation was needed to constrain 
the problem. 

More optimal wave networks, designed using si~ilulated annealing, demon- 
strated that significant improvements could be made in the inverse estimates if 
the observation locations were tailored specifically for this task. Yet, even 
when they are optimized, the smaller networks suffer from a lack of infoma- 
tion. Although the larger optimal networks shown may not be economically 
feasible, they do provide insight into some aspects of designing a practical 
network for inverse modeling. For example, if opti~iiized locations are being 
used, a directional smoothness constraint is of limited benefit. In order to 
improve solution stability, more information (observations or hindcasts) must 
be added. 

Alternatively, the number of deep-ocean directional bins niight be reduced. 
As mentioned previously, the fundamental tradeoff in inverse problems is reso- 
lution versus stability of the solution. Here, a directional resolution of 5 deg 
was chosen, but less resolution could be considered, say 15 deg. This would 
reduce the number of unknowns to as few as 12 for a given hourly time period 
and therefore lead to more stable estimates. However, if incident wave spectra 
are truly narrow, then more serious forward model errors would result. 
Another possibility is to vary the size of directional bins based on a priori 
assumptions. For example, significant wave energy rarely comes from the 
directions 235-255 deg, so this range of incident angles could be treated as a 
single directional bin, or perhaps excluded completely. In addition, swell 
amving in the Bight that is generated in the Northern Hemisphere is believed 
to be directionally broader than swell generated in the Southern Hemisphere; 
and little energy from incident directions greater than 310 deg propagates into 
the Bight. Thus, it may be possible to treat some of these west-northwesterly 
directions with wider directional bins and reduce the number of unknowns 
without seriously degrading the usefulness of the estimates. 

A six-month field experiment (August, 1991 to February, 1992) has been 
completed to assess the viability of more optimal networks. Ten individual 
pressure sensors were deployed to temporarily expand the present CDIP and 
NOAA wave network. These self-contained, bottom-anchored instruments 
measured wave energy and were powered and recorded data internally. The 
experiment was separated into two 3-month deploynients with the first deploy- 
ment designed to observe Southern Hemisphere swell, and the second tailored 
to Northern Hemisphere events. In the optimized networks shown (Fig- 
ures 11-12), simulated annealing was allowed to select shallow-water locations, 
and did so in the smaller networks. However, the forward model solutions are 
considered to be better in deeper water, away from locally strong refractive 
and diffractive effects. In addition, the largest bathynietry errors are most 
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likely to be found in shallow regions. Therefore, the instrument of choice 
would be deepwater Waverider or pitch-and-roll buoys; however, the cost of 
these instruments is somewhat prohibitive. Lnstead, a "poor man's" optimal 
network, made up of the low-cost pressure sensors, was deployed in a water 
depth of 30 m. This depth was selected in an attempt to minimize the forward 
model errors, while remaining shallow enough for recovery by scuba divers to 
be possible. A ten-station expansion of the present network is consistent with 
what is essentially a cost benefit curve, shown in Figure 15. 

When speculating about a permanent network for inverse estimation, pitch- 
and-roll buoys are particularly appealing because they provide five observa- 
tions at one deepwater location. However, from an inverse estimation 
perspective, a fair amount of redundancy/instability would result in comparison 
to individual energy measurements. In other words, a data kernel based on 
optimally moored pitch-and-roll buoys will always have snlaller singular 
values, and less stability, than the kerneI for a network consisting of five times 
as many optimally placed Waverider (energy only) buoys. Nevertheless, these 
smaller singular values may be tolerable when weighed against econonlic and 
logistical factors. 
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6 Conclusions and 
Recommendations 

Conclusions 

For regions with simple shelf and nearshore bathymetry, straightforward 
linear interpolation between coastal measurenlent sites may be acceptable for 
monitoring swell. However, if the bathymetry is sirnple enough for such a 
procedure, then many coastal observations might be replaced with a single 
offshore directional wave buoy coupled with a numerical wave propagation 
model. 

In bathymetrically complex areas, coastal swell conditions are more spati- 
ally variable, and are also more sensitive to the details of the frequency- 
directional distribution in deep water. Si~nple correlations between wave 
measurements at different sites are not likely given the range of possible deep- 
water wave conditions. Interpolation schemes are thus not economically viable 
because a very large number of instrument stations would be required. 

Numerical wave models, used in conjunction with directional buoys and 
shallow-water wave measurements, appear to be a necessary element in a cost- 
effective regional monitoring network. Field verification of these models has 
been difficult because of the need for moderately high-resolution deepwater 
directional spectra. A recent field experiment in Southern California, co-spon- 
sored by the California Department of Boating and Waterways, Sea Grant, and 
the U.S. Army Corps of Engineers, was designed to test these models using 
offshore buoy data to initialize the models. In addition, a directional array of 
sensors was deployed on Harvest Platfornl, 100 lu13 offshore from Point Con- 
ception, CA, in the 200-m water depth, in the fall of 1992. This array will 
provide slightly higher resolution deep-ocean directional spectra than those 
obtained with a pitch-and-roll buoy, and will contribute further to the verifica- 
tion of future numerical wave prediction schemes. 

If it is found that pitch-and-roll buoys cannot provide high enough resolu- 
tion deep-ocean information in some regions, then inverse methods could use 
both deep- and shallow-water wave measurements to better resolve the incident 
directional spectra. This method is presently undergoing verification in South- 
em California. 
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One of the results of this inverse model study has been the development of 
an objective means for identifying optimal wave measurement locations, where 
optimal implies maximum information for defining the regional wave field. 
Given a specific number of instruments and the method to be used to estimate 
regional wave conditions, the optimization technique can provide the best 
locations for those wave measurements. Alternatively, the inverse method can 
be used to construct "cost-benefit" curves which describe the information con- 
tent of an array versus the number of instruments deployed. 

Generation of waves by local winds is an inlportant and complicated pro- 
cess not included in the present discussion, which is restricted to low- 
frequency waves generated by distant storms. However, the inverse method 
can be used as a framework for the design of regional networks which incor- 
porate local generation. If buoys are found to be adequate for monitoring 
swell in a specific region, then shallow-water instrunlent locations could be 
tailored to monitor local seas. 

Recommendations 

An important question in the future planning of a U.S. wave monitoring 
program is how well coastal wave conditions can be predicted from a deep- 
water directional buoy and existing numerical wave models. The answer to 
this question will govern the relative mix of deep- and shallow-water stations 
in an optimal wave monitoring program. Preliminary results from the southern 
California wave experiment on complex bathy~netry suggest that offshore 
directional buoys may prove to be the monitoring method of choice for many 
sections of U.S. coastline. A number of directional buoys are operated by 
NOAA in the United States, and a search should be made for any correspond- 
ing shallow-water data that could be used to test nu~nerical models in other 
less complicated regions throughout the United States. 

The following recommendations are specifically aimed at trying to further 
understand swell waves, and optimal ways of monitoring them, in regions 
which have less complicated bathynetry than the Southern California Bight. It 
is recognized that a useful network must also  non nit or local seas. Veiy little 
research has been done on the topic of local seas and networks and this is 
clearly a subject that needs further study. A number of the following recom- 
mendations concerning the examination of existing data sets and new field 
studies (from the perspective of regional wave monitoring) could be expanded 
to include local seas. 

In regions where no historical data are available, short-term field deploy- 
ments of shallow-water gauges, in conjunction with a deepwater directional 
buoy, should be made. The network optimization method described in this 
report could be used to select shallow gauge sites which, owing to their lack of 
redundancy, provide the best test of the buoyl~nodel method. Therefore, even 
if shallow-water networks are ultimately found to be less desirable than a 
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deepwater buoy for monitoring some coastal regions, optimal shallow-water 
gauge placement is still important for verification purposes. 

If studies using historical data are successful, then the question of deep- 
water directional buoy spacing needs to be addressed. The most cost-efficient 
approach would be to use the WIS hindcast studies to estimate the spatial 
variability of the deepwater wave conditions along different regional coastlines, 
derive a desired spacing of buoys through numerical simulations with the wave 
models, and then verify the separation criteria through one or more regional 
field studies. 

For complex coastal regions where directional buoys are inadequate, shal- 
low-water measurements must be 'an integral part of the monitoring network. 
Much work on this topic has already been done in southern California and, if 
necessary, these n~ethodologies can be applied to other complex coastal 
regions. 
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