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Conversion Factors, Non-Sl to
Sl Units of Measurement

Non-SI units of measurement used in this report can be converted to SI
units as follows:

Multiply By To Obtain

cubic feet 0.02831685 cubic meters

degrees (angle) 0.01745329 radians

feet 0.3048 meters

pounds (mass) 0.4535924 kilograms

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter
square feet 0.09290304 square meters




1 Introduction

Chapter 1

Background

High sea waves tend to appear in groups rather than individually. Be-
cause of the nature of wave grouping, it appears that it may be an impor-
tant influence on the stability of rubble-mound structures.

A succession of high waves that exceeds some arbitrary threshold value
(typically mean or significant wave height) is called a run of high waves,
and the number of waves in this run is the run length. The total or com-
plete run is the combination of the run of high waves followed by the run
of low waves. Reference to a wave group assumes that a run of high
waves is intended. In the present investigation, a group of waves is de-
fined as three or more successive waves that have heights equal to or ex-
ceeding the significant wave height of the entire test run. Also, the
grouping intensity (GI) is defined as the number of these groups per hour
of test waves.

Purpose of Study

The purpose of the present investigation is to obtain a better under-
standing of the effects of wave grouping on the stability of stone armor
when used on breakwater trunks.

Approach

Previous breakwater stability investigations conducted by Carver
(1983) and Carver and Wright (1991) have shown that relative depth (d/L)
and relative wave height (H/d) are two of the most important dimension-
less variables influencing breakwater stability with minimum stability oc-
curring at the lower values of d/L and higher values of H/d, i.e., longer
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wave periods in shallower water. Therefore, initial tests were conducted
with period depth combinations that are in the minimum stability range.

The amount of groupiness in a series of waves is influenced by the
spectral width parameter (y). Previous work has shown that groupiness in-
creases as gamma increases and the spectra become narrower or more
sharply peaked. Therefore, tests were initiated using gamma values of 1,
10, and 20.

Chapter 1  Introduction



2 Tests and Results

Stability Scale Effects

If the absolute sizes of experimental breakwater materials and wave di-
mensions become too small, flow around the armor units enters the lami-
nar regime; and the induced drag forces become a direct function of the
Reynolds number. Under these circumstances prototype phenomena are
not properly simulated, and stability scale effects are induced. Hudson
(1975) presents a detailed discussion of the design requirements necessary
to ensure the preclusion of stability scale effects in small-scale breakwater
tests and concludes that scale effects will be negligible if the Reynolds sta-
bility number (R,) expressed in the equation below is equal to or greater
than 3 x 10%,

g’ H" 1
Ry=—"7—"

where

= acceleration due to gravity, ft/sec?

oo
I

wave height, ft

—
]

j-4

characteristic length of armor unit, ft
v = kinematic viscosity
For all tests reported herein, the sizes of experimental armor and wave

dimensions were selected such that scale effects were insignificant (i.e.,
R was greater than 3 X 10%).
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Method of Constructing Test Sections

All experimental breakwater sections were constructed to reproduce as
closely as possible results of the usual methods of constructing full-scale
breakwaters. The core material was dampened as it was dumped by
bucket or shovel into the flume and was compacted with hand trowels to
simulate natural consolidation resulting from wave action during construc-
tion of the prototype structure. Once the core material was in place, it
was sprayed with a low-velocity water hose to ensure adequate compac-
tion of the material. The underlayer stone then was added by shovel and
smoothed to grade by hand or with trowels. Armor units used in the cover
layers were placed in a random manner corresponding to work performed
by a general coastal contractor; i.e., they were individually placed but
were laid down without special orientation or fitting. After each test the
armor units were removed from the breakwater, all of the underlayer
stones were replaced to the grade of the original test section, and the ar-
mor was replaced.

Test Equipment and Materials

Equipment used

Tests were conducted in a concrete wave flume, 11 ft wide, 6 ft deep,
and 245 ft long.! The cross section of the tank in the vicinity of the struc-
tures was partitioned into two 3-ft-wide channels and two 2.5-ft-wide
channels (Figure 1). Identical test sections were constructed in the 3-ft
channels while wave absorption was achieved in the 2.5-ft channels,
which were left empty. The flume is equipped with an electro-hydraulic,
horizontal-displacement wave generator capable of producing monochro-
matic and irregular waves of various periods and heights. Changes in
water surface elevation as a function of time (wave heights) were meas-
ured by electrical capacitance-type gauges at selected locations. The
wave machine was controlled by and data were collected with an on-line
Dec MicroVax I computer. Data then were transferred to a Vax 3600 for
analysis.

Materials used

Rough hand-shaped granitic stone (W) with an average length of about
two times its width, average weight of 0.38 1b, and a specific weight of
167 pcf was used. Sieve-sized angular-shaped limestone (unit weight =
165 pcf) was used for the underlayers and core.

1 A table of factors for converting non-SI units of measurement to SI units is presented on page v.
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Selection of Test Conditions

All tests were conducted with a Texel, Marsen, Arsloe (TMA) spec-
trum. For tests described herein, the wave flume was calibrated for peri-
ods of 1.5, 2.25, 3.0, and 4.0 sec in water depths of 0.80 and 1.60 ft, thus
assuring a range of relative depths (d/L’s) that is consistent with the major-
ity of conditions to which prototype structures are exposed. Goda and
Suzuki’s (1976) method was used to resolve the incident and reflected
spectra.

All tests were conducted on stone sections of the type shown in Figures
2 and 3 and Photos 1-4. Both sea-side and beachside slopes were held
constant at 1V on 1.5H.

Design wave heights for the no-damage criterion were determined by
subjecting the test sections to irregular waves successively larger in height
in 0.01- to 0.02-ft increments until the maximum heights for which the ar-
mor was stable were reached. Each was allowed to attack the breakwater
for a time equivalent to at least 1,000 peak wave periods, then the test sec-
tions were rebuilt prior to attack by the next added increment wave. This
1,000-wave duration allowed sufficient time for a statistically stable ir-
regular wave condition to develop in the wave tank and also was sufficient
for the test sections to stabilize.

Shallow-Water Test Results (d = 0.80 ft)

Shallow-water stabijlity test results are summarized in Table 1. Pre-
sented therein are experimentally determined design wave heights and cor-
responding stability coefficients as functions of wave period, spectral
width parameter (gamma), GI, and relative depth (d/L). Photos 5-8 show
typical after-testing views of the structures at the 0.80-ft depth. As evi-
denced in these photos, the design wave conditions allowed occasional dis-
placement of a few random armor units, but the damage never exceeded
the acceptable design criteria of more than 2 percent of the total number
of armor units in the primary cover layer. Results of a few tests did ex-
ceed the acceptable design criteria, however, the test conditions were
never allowed to totally destroy the test section.

Figure 4 presents K, the Hudson stability coefficient, as a function of
gamma for all wave periods investigated and Figures 5-8 present results
for constant wave period. These data show stability to be influenced by
wave period with the lower stabilities being observed at the longer wave
periods. Also, the lower stabilities generally occur at the higher values of
gamma. Figure 9 depicts stability as a function of grouping intensity, i.e.,
number of wave groups per hour of test waves. As would be expected, the
lower stabilities are generally associated with the higher grouping
intensities.

Chapter 2 Tests and Results



Deeper Water Test Results (d = 1.60 ft)

Test results for the 0.80-ft depth showed the lower stabilities consis-
tently occurred at the higher values of gamma; therefore, tests at the 1.60-
ft depth (Table 2) were conducted using gamma values of 10 and 20 only.
Figure 10 presents K, as a function of gamma for all wave periods and
Figures 11-14 present results for constant wave period. Figure 15 pre-
sents stability as a function of grouping intensity. As with the 0.80-ft
depth, the lower stabilities are again observed for the longer wave periods
and the higher values of gamma and grouping intensity.

Summary and Nondimensionalization

Stability is presented as a function of grouping intensity for both water
depths in Figure 16. These data show a decrease in stability with increas-
ing T and GI; however, no strong depth-dependent trend is evident. Test
results are nondimensionalized in Figures 17-19. Presented therein are
the stability coefficients as a function of relative depth (d/L) for the two
depths individually and collectively. These data show the influence of
wave period with the lower stabilities occurring at the lower values of
d/L, i.e., longer wave periods in shallower water. As discussed pre-
viously, a group of waves is defined as three or more successive waves
which have heights equal to or exceeding the significant wave height of
the entire test run. The maximum number of waves observed in a group
was Six.

Discussion

Results of this study show stability to be influenced by wave period,
spectral width, and wave grouping intensity. As would be expected, the
lowest stabilities are observed for the longest wave periods and the most
highly grouped waves. Minimum stability coefficients observed herein
(values of 0.8, 1.1, 1.6, and 1.8) are especially significant in that they are
less than the minimums presently recommended for design (Shore Protec-
tion Manual 1984). The levels of wave grouping tested herein are achiev-
able at some, but not all, prototype locations; therefore, these results
should be applied on a case-by-case basis.

Chapter 2 Tests and Results



3 Conclusions

Based on tests and results described herein, in which stone armor is
used on breakwater trunks and subjected to spectral wave attack, it is con-
cluded that:

a. Armor stability is influenced by wave period with the lower
stabilities being observed at the longer wave periods in shallower

water.

b. The lower stabilities generally occur for the more highly grouped
waves.

c. Minimum stability coefficients observed herein are especially
significant in that they are less than the minimums presently
recommended for design.

Chapter 3 Conclusions
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Figure 16. Stability coefficient versus grouping intensity (Gl); 0.80-ft and 1.6-ft depths
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Table 1
Shallow-Water Stability Test Results (0.80-ft depth)

Gamma Tp, sec d/L H s ft Gl Ky
1.0 1.50 0.11 0.46 8 6.3
1.0 1.50 0.11 0.53 8 9.7
1.0 2.25 0.07 0.42 10 5.0
1.0 2.25 0.07 0.45 10 59
1.0 3.00 0.05 0.36 10 3.0
1.0 3.00 0.05 0.40 10 42
1.0 4.00 0.04 0.40 4 42
1.0 4.00 0.04 0.45 4 59

10.0 1.50 0.1 0.41 16 44

10.0 1.50 0.11 0.47 16 6.9

10.0 2.25 0.07 0.41 14 4.4

10.0 2.25 0.07 0.49 14 7.6

10.0 3.00 0.056 0.40 16 4.2

10.0 3.00 0.05 0.44 16 57

10.0 4.00 0.04 0.39 20 3.9

10.0 4.00 0.04 0.42 20 50

20.0 1.50 0.1 0.38 16 3.7

20.0 1.50 0.11 0.45 16 5.9

20.0 2.25 0.07 0.33 26 24

20.0 2.25 0.07 0.34 26 26

20.0 2.25 0.07 0.34 26 2.6

20.0 2.25 0.07 0.37 26 3.2

20.0 3.00 0.05 0.25 26 1.1

20.0 3.00 0.05 0.39 26 3.9

20.0 4.00 0.04 0.23 30 08

20.0 4.00 0.04 0.29 30 1.6

20.0 4.00 0.04 0.30 30 1.8

20.0 4.00 0.04 0.31 30 2.0

20.0 * 1 4.00 0.04 0.33 30 24

20.0 4.00 0.04 0.33 30 24




Table 2

Test Results, 1.6-ft depth

Gamma Tp, sec d/L Hmo, ft GlI Ky
10.0 1.50 0.17 0.49 10 7.6
10.0 1.50 0.17 0.51 10 8.7
10.0 2.25 0.11 0.44 12 57
10.0 2.25 0.11 0.46 12 6.3
10.0 3.00 0.08 0.41 14 4.4
10.0 3.00 0.08 0.45 14 59
10.0 4.00 0.06 0.42 21 5.0
10.0 4.00 0.06 0.42 21 5.0
20.0 1.50 0.17 0.49 22 7.6
120.0 1.50 0.17 0.51 22 8.7
20.0 2.25 0.11 0.42 18 5.0
20.0 2.25 0.1 0.36 18 3.0
20.0 3.00 0.08 0.38 28 3.7
20.0 3.00 0.08 0.38 28 3.7
20.0 4.00 0.06 0.33 36 2.4
20.0 4.00 0.06 0.33 36 24
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de view before wave attack at the 0.80-ft depth. Change in stone color denotes still-water level
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Sea-side view after wave attack of 4.0-sec, 0.33-ft waves at the 1.60-ft depth

Photo 12.



Appendix A
Notation

Appendix A Notation

Relative depth, dimensionless
Acceleration due to gravity, ft/sec2

Wave height, ft

Relative wave height

Zero-moment wave height, ft

Hudson stability coefficient, dimensionless
Characteristi¢ length of armor unit, ft
Reynolds stability number

Wave period of peak energy density of spectrum, sec
Granitic stone weight

Spectral width parameter

Kinematic viscosity of experimental fluid medium, ft%/sec
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