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Preface

The two-dimensional numerical modeling of the flow conditions in the
proposed San Timoteo Channel was performed for the U.S. Army Engineer
District, Los Angeles (SPL). The study was authorized by the U.S. Army
Engineer Division, South Pacific, on 26 August 1993. SPL personnel
involved in this study were Mr. Algis Bliudzius and Ms. Wendy Gist under
the supervision of Mr. Brian Tracy, Chief of the Hydraulics Section.

The study was conducted in the Hydraulics Laboratory of the U.S. Army
Engineer Waterways Experiment Station (WES) during the period December
1993 to April 1994 under the direction of Messrs. F. A. Herrmann, Jr.,
Director of the Hydraulics Laboratory; R. A. Sager, Assistant Director of the
Hydraulics Laboratory; and G. A. Pickering, Chief of the Hydraulic Struc-
tures Division, Hydraulics Laboratory.

This work was performed by Messrs. Richard L. Stockstill and Mikel W.
Ott under the supervision of Mr. John E. George, Chief, Locks and Conduits
Branch, Hydraulic Structures Division. Technical assistance in the form of
consultation and peer review was provided by Dr. R. C. Berger, Estuaries
Division, Hydraulics Laboratory. The report was prepared by Mr. Stockstill.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.



Conversion Factors, Non-Sl to
S| Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By To Obtain
cubic feet 0.02831685 cubic meters
degrees {(angle) 0.01745329 radians
feet 0.3048 meters




1 Introduction

Background

The San Timoteo Creek is a tributary of the Santa Ana River and drains
portions of San Bernardino and Riverside Counties (Figure 1). The existing
creek has the capacity to protect the surrounding community from approxi-
mately a 20-year-frequency flood (U.S. Army Engineer District, Los Angeles,
1993). The recommended plan would provide a 100-year level of protection

(19,000 cfs).!
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Figure 1. Vicinity and location maps

The proposed design within the reach studied includes a sediment basin
(the last of a series of basins for the project), a concrete weir followed by a
chute having converging sidewalls, a compound horizontal curve consisting of
spirals between a circular curve and the upstream and downstream tangents

1 A table of factors for converting non-SI units of measurement to SI units is found on
page v.
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with a banked invert, and a bridge pier associated with the San Timoteo
Canyon Road. The modeled reach extended from basin sta 5+00 to channel
sta 280+00, resulting in a total simulated channel length of 2,396.94 ft.
Geometrical details of the proposed channel design are shown in the plan view
provided in Plate 1.

Purpose

This investigation was initiated because there was concern as to the
adequacy of a one-dimensional analysis of the flow conditions within the chan-
nel chute. There was a question as to whether computing cross-sectional aver-
aged flow variables provided a sufficiently accurate estimate of flow depths
within the geometrically complex chute. It was known that the supercritical
flow in the chute would produce oblique standing waves. These waves do not
present a problem as long as the channel walls are of sufficient height. How-
ever, the flow conditions in the upper end of the channel are further compli-
cated by the fact that the chute is followed by a channel curve, followed by
the San Timoteo Canyon Road bridge. A two-dimensional analysis was
deemed necessary to evaluate the chute’s influence on the flow conditions in
the curve and the curve’s impact on the flow conditions at the bridge.

Approach

The two-dimensional, depth-averaged flow model, HIVEL2D, was used to
simulate the flows in the high-velocity channel. This model was chosen
because of its ability to simulate supercritical flow and capture shocks such as
oblique standing waves.
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2 Model Description

Governing Equations

HIVEL2D (Stockstill and Berger 1994) solves the depth-averaged unsteady
shallow-water equations implicitly using finite elements. The shallow-water
equations are the result of vertical integration of the equations of mass and
momentum conservation for incompressible flow assuming hydrostatic pres-
sure distribution. The dependent variables of the two-dimensional fluid
motion are defined by the flow depth and the x-direction and y-direction
components of unit discharge. These variables are functions of the spatial
Cartesian coordinates x and y and time. A brief description of the finite ele-
ment model is provided in Appendix A.

Assumptions and Limitations

An important (and standard) assumption made in the derivation of the
governing equations is that vertical accelerations are negligible when com-
pared to the horizontal accelerations and the acceleration due to gravity. This
assumes that the pressure distribution is hydrostatic. The hydrostatic pressure
assumption is generally applicable to high-velocity channels; however, certain
limited areas of the flow field are decidedly nonhydrostatic. One must resort
to engineering judgment to assess the ramifications of this difference, noting
that hydrostatic models overestimate the speed of short wavelengths.

Another significant assumption is that the invert slope is geometrically mild
(less than about 0.02), though it may be hydraulically steep, producing super-
critical flow. This is a reasonable assumption for most high-velocity channels.
However, the flow speed in long channel reaches with a favorable slope
greater than about 0.05 will tend to be overestimated and the flow depth will
tend to be underestimated, whereas adverse steep slopes will tend to over-
estimate the flow depth and underestimate the flow speed. A general discus-
sion of the assumptions associated with the shallow-water equations is
presented in Berger and Stockstill (1994).
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3 Model Applications

Application of the model to the proposed channel design requires the con-
struction of a numerical model computational mesh to represent the design’s
geometry and the specification of boundary conditions and model parameters.

Geometry and Computational Mesh

The reach of the San Timoteo Creek channel modeled in this study was
from basin sta 5400 to 0+20 and from channel sta 299+416.94 to 280400, a
total length of 2,396.94 ft. The subcritical flow in the sediment basin at the
upper end is controlled by the concrete weir, which begins the concrete-lined
high-velocity channel. The upstream face of the weir is a 1V on 2H slope.
The weir crest, which is immediately followed by a 940-ft converging sidewall
chute, is 20 ft long in the direction of flow. The chute was designed to transi-
tion from the 338-ft-wide sediment basin to the 86-ft-wide high-velocity chan-
nel. A channel bend is located 83.35 ft downstream of the chute end. The
bend was designed with spiral curves and a banked invert. The San Timoteo
Canyon Road crosses the channel downstream of the bend. One pier for this
bridge is located within the channel, near the channel center line. Plate 1
shows a plan view of the modeled reach.

The width of the flow domain within the sediment basin is dependent on
the water-surface elevation in this vicinity because the channel sidewalls are
sloping. Therefore, the numerical model computational mesh of the sediment
basin was different for the two discharges simulated. Initial numerical tests
were conducted to determine an adequate top bank elevation to use for the
domain limit. By trial, a top bank of elevation 1316.0' was found appropri-
ate for modeling a discharge of 19,000 cfs. Representing the basin flow using
a fixed grid was deemed adequate because the flow in this region is subcriti-
cal. Fixed grid boundary conditions are sufficient for simulation of steady
subcritical flow in channels having sloping sidewall boundaries.

' All elevations (el) cited herein are in feet referenced to the National Geodetic Vertical
Datum (NGVD).
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The San Timoteo Canyon Road bridge pier presently has a semicircular
nose and tail. The pier was modeled with a triangular nose and tail. Signifi-
cantly more grid refinement would be needed to simulate a semicircular nose
and tail and was not deemed necessary for this study. Proposed channel
modifications include the addition of a debris nose on this pier. A sloping
debris nose cannot be accurately modeled with a depth-averaged model; there-
fore, only the existing pier configuration was simulated in this study.

The numerical model computational mesh is shown in Plate 2. The mesh
consisted of 945 nodes and 918 elements. Grid resolution was more refined
in the vicinity of sidewall boundary alignment changes and at all grade breaks.

Boundary Conditions

This study included the simulation of two discharges, the design discharge
of 19,000 cfs and a lesser discharge of 12,000 cfs. The inflow boundary
located in the sediment basin was subcritical and therefore required two
boundary conditions. The x- and y-direction components of unit discharge
were specified for the inflow boundary conditions. These unit discharges
were computed assuming a constant velocity over the inflow boundary cross
section. A water-surface elevation at the inflow boundary was assumed, then
the inflow velocity was computed as the discharge divided by the flow area.
The unit discharges were calculated as the product of the flow depth at each
inflow node times the computed velocity. These unit discharges were further
resolved into x- and y-components normal to the inflow boundary. The out-
flow boundary was supercritical and therefore required no boundary
conditions.

Model Parameters

Model and flow parameters used in the initial simulation are provided in
the following tabulation, where o is the temporal differencing weight (o = 1
is first-order and o = 1.5 is second-order backward differencing); 8, and By
are the Petrov-Galerkin parameters for smooth flow and for shocks, respec-
tively; Cg, and Cgy are the coefficients used in determination of eddy
viscosity; and g is acceleration due to gravity. Descriptions of these
conditions are presented in Appendix A.

Model Condition Value

a 1.0

Bsus By 0.1, 0.5
Cswr Csn 0.1,0.5

g 132.2 ft/sec?
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Because a steady-state solution was sought, the temporal difference order was
irrelevant. Therefore, a first-order temporal differencing was used in all
simulation runs.
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4 Results

As stated previously, this study included the simulation of two discharges,
the design discharge of 19,000 cfs and a lesser discharge of 12,000 cfs. This
12,000-cfs discharge was selected for testing because a one-dimensional analy-
sis conducted by the U.S. Army Engineer District, Los Angeles, found that
the 12,000-cfs discharge actually resulted in larger Froude numbers in the
channel chute. It was felt that these larger Froude numbers might be accom-
panied by higher standing waves at a particular station than those produced by
the design discharge (19,000 cfs).

The prototype flow geometry and boundary roughness for the concrete
channel reach will most likely result in a Manning’s n value of approximately
0.014. The concrete reach of channel extends from the toe of the upstream
face of the weir (basin sta 0+44 at center line) downstream to the end of the
modeled reach (sta 280+00). However, an envelope of possible hydraulic
conditions was established by also performing simulations of the flow condi-
tions resulting from a very smooth boundary by using an n value of 0.012.
All simulations used an n of 0.030 for the sediment basin, which has rip-
rapped side slopes and a natural bed.

The sensitivity of simulation results to the choice of model parameters and
mesh refinement was determined. This sensitivity was established by chang-
ing one condition per run and then comparing the results with previous runs to
assess the condition’s impact on simulation results.

Design Discharge, 19,000 cfs

Initial tests (n = 0.014)

Water-surface profiles resulting from a discharge of 19,000 cfs and an n
value of 0.014 are presented in Plate 3 and in tabular form in Table 1. The
profiles illustrate the variation in the depth of flow at the sidewalls resulting
from supercritical flow in the channel chute. A significant setup is noted in
the channel bend. It is interesting to note the rise in the water-surface eleva-
tion in the basin as the flow approaching the structure decelerates. Of course
the total energy grade line decreases in the direction of flow, but due to the
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gradual expansion of the basin, the velocity head reduction is greater than the
loss of total head. It is clearly shown in the profile that sufficient clearance is
provided through the San Timoteo Canyon Road bridge. The significant
runup on the upstream face of the pier is more of a model artifact than what
would actually occur. Vertical accelerations immediately upstream of the pier
nose are of such magnitude that the hydrostatic assumption is not valid.

A hydrostatic model provides a poor estimate of this sudden runup. To
illustrate this point, a first approximation of the magnitude of these accelera-
tions results in the conclusion that this pier nose runup is a violation of the
hydrostatic assumption and that the runup is overestimated. A first approxi-
mation of the magnitude of these accelerations is obtained by applying the
kinematic boundary condition to the water surface:

w =3 _0h iy ok (1)
todt ot as _

where

w, = vertical component of velocity at the water surface

h = flow depth

t = time

s = stream direction
and

V| = @ + )"

where u and v are the x- and y-direction components of velocity, respectively.
The vertical acceleration a, is:

+ W—
dz

A LA (L @)
foodar o as

Neglecting the last term and applying to steady flow,

w = vt 3)
s as

and
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Using difference approximations of the results of a simulation of
19,000 cfs and an n value of 0.014, the ratio of a,/g at the pier nose was
calculated to be 9.7. This definitely violates the hydrostatic assumption, i.e.,
that the vertical accelerations are negligible when compared to gravity (Appen-
dix A). Pressures at the pier nose in the actual system (prototype) will be
greater than hydrostatic, which will act to suppress the water-surface rise.
Determination of what the water-surface elevation will be in the prototype is
difficult. However, it will be significantly less than that calculated assuming a
hydrostatic pressure distribution.

To illustrate that the hydrostatic assumption is appropriate elsewhere in the
flow field, the vertical acceleration was approximated in the area of the
oblique standing wave initiated at the pier nose (sta 282+10, 10 ft right of
center line). The vertical acceleration in this vicinity, relative to gravity, was
calculated to be 0.4. Although this is not insignificant, it shows that the
hydrostatic assumption is reasonable even in areas where the flow is extremely
rough.

Depth contours for a discharge of 19,000 cfs and an n value of 0.014 are
presented in Figure 2. Depth contours within the chute are shown in Fig-
ure 3. The contours illustrate the oblique standing waves resulting from the
converging sidewalls. Vertically exaggerated water-surface mesh plots
(Plates 4 and 5) show the variation in depths and the superelevation in the
channel bend. Depth contours in the vicinity of the bridge are provided in
Figure 4.

At this point in the study, there was interest in the effect of the oscillations
of the computed depths at the sidewalls in the vicinity of the crest on the
results downstream, particularly if these oscillations were a numerical rather
than a physical phenomenon. A second run using the discharge of 19,000 cfs
and an n value of 0.014 was made using a different Petrov-Galerkin weighting
parameter for smooth flow, B,. This simulation used a 8, of 0.25 rather
than a (g, of 0.1, which was used in the initial simulation. The Sy, is the
minimum damping parameter used throughout the flow field.

The results obtained from the two B,’s are compared in Plate 6. These
profiles show that the variation of S, resulted in only minor changes in the
computed depths. Moreover, the two runs converged to practically the same
solution 150 ft downstream of the crest. Therefore, it is apparent that the
solution of this particular flow field is not significantly influenced by the
choice of the Petrov-Galerkin weighting parameter, B,.

The model’s simulation of the flow in the crest vicinity was further

analyzed by grid refinement. The density of the original mesh was doubled in
both directions on and adjacent to the crest. Details of the original and
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Figure 2. Depth contours for the design discharge (n = 0.014)

refined grids in this area are provided in Plate 7.

Water-surface profiles for the design discharge and an n value of 0.014
computed using the refined grid are shown in Plate 8 and Table 2. The
refined solution also oscillated at the crest. The results obtained from the
original and fine grids (8, = 0.1 for both tests) are compared in Plate 9.
Again it is apparent that a node-to-node oscillation occurred upstream and
downstream of the point at which the flow was accelerating from subcritical to
supercritical regardless of grid refinement. The oscillations were pronounced
only at the sidewalls where the flow passed around the wing walls and
intercepted the converging sidewalls. Therefore, it is difficult to determine
whether these results are a numerical artifact or physical. However, the
solutions converged at a distance of 150 ft downstream of the crest.
Therefore, using the original grid and a g, of 0.1 are adequate for design
purposes and were used throughout the remainder of the study.
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Figure 3. Depth contours within the chute (discharge = 19,000 cfs and
n = 0.014)

Decreased roughness (n = 0.012)

Water-surface profiles produced by a discharge of 19,000 cfs and an n
value of 0.012 are presented in Plate 10 and Table 3. The reduced n value
resulted in the heights of the standing waves being about the same, but the
wave crests were located further downstream compared to those from an n
value of 0.014. The flow conditions within the reach are much more
dependent on the channel form rather than channel friction; that is, the con-
verging sidewalls in the chute, the horizontal curve, and the bridge pier had
such an effect on the flow that the differences in an n value of 0.012 com-
pared to an n value of 0.014 were insignificant. The maximum water-surface

Chapter 4 Results
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Figure 4. Depth contours in vicinity of San Timoteo Canyon Road bridge pier {discharge
19,000 cfs and n = 0.014)

12

elevations computed using an n value of 0.012 were less than or equal to
those computed using an n value of 0.014.

12,000-cfs Discharge

A new numerical model computational mesh was constructed for the simu-
lation of a discharge of 12,000 cfs. This new mesh was needed because the
domain width in the sediment basin was reduced from that resulting from a
discharge of 19,000 cfs. The top bank elevation was selected by first deter-
mining the expected water-surface elevation in the basin for a discharge of
12,000 cfs. Given the water-surface elevation simulated for a discharge of
19,000 cfs, a discharge coefficient for the “broad-crested weir” was cal-
culated. This discharge coefficient was then used to compute the basin water-
surface elevation for a discharge of 12,000 cfs. It was then determined that a
top bank elevation of 1314.0 was appropriate to use to construct the grid for
the lesser discharge. The numerical model computational mesh for a dis-
charge of 12,000 cfs differed from the original mesh only in the vicinity of
the side boundaries within the basin.

Simulation results with a discharge of 12,000 cfs for n values of 0.014 and
0.012 are presented as water-surface profiles in Plates 11 and 12 and Tables 4
and 5, respectively. As expected, the depths are less than those produced by
the design discharge and no adverse standing waves were noted. The
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maximum water-surface elevations resulting from a discharge of 12,000 cfs
using either an n value of 0.014 or an n value of 0.012 were less than those
computed for the design discharge with an n value of 0.014.

Chapter 4 Results

13



14

5 Summary and Conclusions

Two-dimensional (depth-averaged) simulations of the flow conditions in the
San Timoteo Channel were conducted to assess the adequacy of the proposed
design. Particular attention was given to the variation in flow depths within
the entrance chute. The flow at the crest accelerated from subcritical to
supercritical flow and remained supercritical through the chute and channel
thereafter. Oblique standing waves were produced when the supercritical flow
intercepted the chute’s laterally converging sidewalls. However, these stand-
ing waves were expected and given that the sidewalls will be designed of suf-
ficient height, the flow conditions were deemed acceptable.

The prototype flow geometry and boundary roughness will most likely
result in a Manning’s n value approximately equal to 0.014. However, flow
conditions resulting from a Manning’s n value of 0.012 were also simulated so
that an envelope of possible hydraulic conditions could be established. Along
this same line of reasoning, in addition to the design discharge (19,000 cfs), a
smaller discharge (12,000 cfs) was simulated. For a given discharge, there
was no significant difference in the water-surface elevations computed using
an n value of 0.014 and an n value of 0.012. The smaller n value did, how-
ever, result in the wave crests being located further downstream due to the
increase in velocity. No adverse flow conditions were noted for a discharge
of 12,000 cfs.

Simulation results indicate that the proposed San Timoteo Channel design
and in particular, the San Timoteo Canyon Road bridge, will convey the
design discharge of 19,000 cfs in an acceptable manner. The prototype will
experience significantly less runup on the pier nose than the simulation results
indicated. Sidewall heights should be designed based on the simulation results
realizing the uncertainties associated with the analyses.
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F’f:ble 1

ater-Surface Elevations, Discharge 19,000 cfs, n = 0.014

L Elevation L [Elevation Elevation
tation L eft Side tation Center tation Right Side
5 + 00.00 [|1317.45 5 + 00.00 }1317.51 5 + 00.00 1317.74
4 + 42.82 |1317.56 4 + 40.00 [1317.52 4 + 50.89 (1317.16
3 + 83.61 (1317.54 3 + 80.00 [1317.63 3 +91.28 1317.61
3 + 83.60 |1317.51 3 + 20.00 [1317.70 3 + 46.00 [1317.67
3 + 43.97 |1317.68 2 +72.00 [1317.75 2 + 87.60 (1317.74
3 + 06.91 [1317.80 2 +24.00 [1317.79 2 +47.99 [|1317.75
2 + 70.02 [1317.82 1 + 88.00 [1317.81 2 +11.60 [1317.79
2 +29.47 |1317.88 1 + 64.00 {1317.82 1+ 75.99 [(1317.78
1+ 87.11 11317.78 1+ 40.00 |1317.84 1 + 55,656 [1317.81
1+ 61.01 N1317.77 1+ 16.00 |1317.83 1+ 2799 [1317.79
1 + 39.81 |1317.85 0 + 92.00 [1317.89 1+ 03.99 [1317.82
1+ 18.76 |1317.83 0 + 68.00 [1317.83 0+ 79.99 \1317.77
0 + 97.88 |1317.85 0 + 44.00 |1317.97 0 + 55.39 [1317.82
0 + 81.31 {1317.84 299 + 16.94 [1317.35 0 + 42.45 [1317.56
0 + 68.04 [1317.80 298 + 96.94 [1314.69 0+ 31.32 |1317.92
0 + 55.40 [1317.87 298 + 76.94 |1313.98 299 + 16.94 |1317.85
0 + 43.51 [1317.64 298 + 46.94 |{1313.38 299 + 16.94 |[1317.79
0 + 31.61 |1318.02 298 + 22.94 |1313.03 299 + 06.94 ([1314.79
299 + 16.94 |1317.92 297 + 90.94 [1311.63 298 + 96.94 [1317.44
299 + 16.94 [1317.77 297 + 58.94 (1311.98 298 + 86.94 (1315.51
299 + 06.94 |1315.51 297 + 26.94 |1312.77 298 + 76.94 {1315.91
298 + 96.94 [1317.38 296 + 96.94 (1312.14 298 + 61.94 [1315.07
298 + 86.94 }1315.93 296 + 66.94 [1311.65 298 + 46.94 [1314.76
298 + 76.94 |1316.00 296 + 36.94 [1311.13 298 + 22.94 [1314.16
298 + 61.94 |{1315.32 296 + 06.94 |1310.53 297 + 90.94 ]1313.57
298 + 46.94 (1314.95 295 + 74.94 ]1309.90 297 + 58.94 (1312.91
298 + 22.94 [1314.34 295 + 45.61 (1309.75 297 + 26.94 [1312.39
297 + 90.94 |1313.68 295 + 16.28 [1308.97 296 + 96.94 [1311.60
297 + 58.94 (1313.03 294 + 86.94 {1308.28 296 + 66.94 [1311.27
297 + 26.94 |1312.47 294 + 46.94 |1308.29 296 + 36.94 [1310.47
296 + 96.94 [1311.75 294 + 06.94 [1308.24 296 + 06.94 [1309.45
296 + 66.94 [1311.31 293 + 64.94 (1307.38 295 + 74.94 [1310.02
296 + 36.94 {1310.51 293 + 22.94 [1305.26 295 + 45.61 [1310.23
296 + 06.94 }1309.70 292 + 80.94 |1302.82 295 + 16.28 {1310.01
295 + 74.94 {1309.99 292 + 38.94 {1301.92 294 + 86.94 (1309.64
295 + 45.61 (1310.13 291 + 96.94 }1302.10 294 + 46.94 |1308.50
295 + 16.28 {1309.92 291 + 54.94 [1301.81 294 + 26.94 [1308.13
294 + 86.94 [1309.52 291 + 12.94 |1298.90 294 + 06.94 [1306.86
294 + 46.94 [1308.40 290 + 70.94 [1297.82 293 + 85.94 [1304.79
294 + 26.94 [1308.08 290 + 28.94 [1297.11 293 + 64.94 [1305.07
294 + 06.94 |(1306.76 290 + 07.94 [1297.11 293 + 22.94 [1305.32
293 + 85.94 [1304.68 289 + 86.94 [1297.11 292 + 80.94 [1304.65
293 + 64.94 {1305.01 289 + 66.29 [1296.89 292 + 38.94 {1303.35
293 + 22.94 [1305.38 289 + 45.64 [1296.49 291 + 96.94 [1301.28
{Continued)

LNote'. Sides of channel are referenced to looking downstream.
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LT;ble 3

ater-Surface Elevations, Discharge 19,000 c¢fs, n = 0.012
Elevation Elevation Elevation
|Station Left Side Station Center Station Right Side
5 + 00.00 [1317.44 5 + 00.00 [1317.50 5 + 00.00 [|1317.74
4 + 42.82 (1317.55 4 + 40.00 |1317.52 4 + 50.89 (1317.15
3 + 83.61 [1317.54 3 + 80.00 [1317.62 3+ 91.28 |[1317.60
3 + 83.60 |1317.50 3 + 20.00 [1317.69 3 + 46.00 [1317.66
3 + 43.97 [1317.67 2 + 72,00 [1317.75 2 + 87.60 [1317.73
3 +06.91 1317.79 2 + 24.00 [1317.78 2 +47.99 |1317.74
2 + 70.02 |1317.81 1 + 88.00 [1317.80 2 +11.60 {1317.78
2 + 29.47 (1317.87 1 + 64.00 [1317.81 1+ 75.99 (1317.77
1+ 87.11 |1317.77 1 + 40.00 |1317.83 1 + 55,65 [1317.80
1+ 61.01 [1317.76 1+ 16.00 [1317.83 1+ 27.99 |1317.78
1+ 39.81 [1317.84 0 + 92.00 |1317.88 1+ 03.99 [1317.82
1+ 18.76 [1317.82 0 + 68.00 [1317.82 0+ 79.99 |1317.76
0 + 97.88 [1317.84 0 + 44.00 ]1317.96 0 + 65.39 {1317.82
0 + 81.31 [1317.83 299 + 16.94 [1317.34 0 + 4245 [|1317.54
0 + 68.04 |1317.79 298 + 96.94 [1314.68 0+ 31.32 |[1317.92
0 + 55.40 [|1317.86 298 + 76.94 [1313.97 299 + 16.94 [1317.85
0 + 43.51 (1317.63 298 + 46.94 [1313.30 299 + 16.94 11317.77
0 + 31.61 |1318.02 298 + 22.94 [1313.01 299 + 06.94 [1314.74
299 + 16.94 [1317.77 297 + 90.94 11311.71 298 + 96.94 |1317.46
299 + 16.94 [1317.91 297 + 58.94 |1311.52 298 + 86.94 |[1315.45
299 + 06.94 [1315.48 297 + 26.94 |1312.64 298 + 76.94 [1315.91
298 + 96.94 11317.39 296 + 96.94 [1312.12 298 + 61.94 |1315.03
298 + 86.94 (1315.89 296 + 66.94 |1311.50 298 + 46.94 [1314.75
298 + 76.94 |1316.00 296 + 36.94 |1311.11 298 + 22.94 [1314.11
298 + 61.94 |[1315.29 296 + 06.94 ]1310.55 297 + 90.94 (1313.63
298 + 46.94 {1314.94 295 + 74.94 [1309.81 297 + 58.94 [1312.84
298 + 22.94 [1314.29 295 + 45.61 11309.43 297 + 26.94 [1312.35
297 + 90.94 [1313.64 295 + 16.28 11309.02 296 + 96.94 [1311.55
297 + 58.94 |1312.98 294 + 86.94 |1308.26 296 + 66.94 |1311.04
297 + 26.94 |1312.42 294 + 46.94 [1307.40 296 + 36.94 [1310.62
296 + 96.94 |1311.69 294 + 06.94 [1307.87 296 + 06.94 [1309.40
296 + 66.94 ]1311.15 293 + 64.94 [1307.68 295 + 74.94 [1309.26
296 + 36.94 |1310.61 293 + 22.94 [1305.41 295 + 45.61 [1309.97
296 + 06.94 [1309.61 292 + 80.94 11302.89 295 + 16.28 [1309.86
295 + 74.94 [1309.38 292 + 38.94 (1301.21 294 + 86.94 {1309.46
295 + 45.61 [1309.85 291 + 96.94 (1301.12 294 + 46.94 [1308.53
295 + 16.28 [1309.78 291 + 54.94 {1301.79 294 + 26.94 |1308.23
294 + 86.94 (1309.37 291 + 12.94 [1300.68 294 + 06.94 [1306.84
294 + 46.94 [1308.39 290 + 70.94 [1298.05 293 + 85.94 [1304.79
294 + 26.94 [1308.13 290 + 28.94 11296.36 293 + 64.94 (1304.28
294 + 06.94 |1306.73 290 + 07.94 [1295.99 293 + 22.94 |1304.77
293 + 85.94 [1304.73 289 + 86.94 {1296.19 292 + 80.94 [1304.49
293 + 64.94 [1304.18 289 + 66.29 11296.26 292 + 38.94 |1303.63
293 + 22.94 [1304.70 289 + 45.64 [1296.82 291 + 96.94 [1301.63
{Continued)

Note: Sides of channel are referenced to looking downstream.




Table 3 (Concluded)

280 + 63.60 [|1284.49

280 + 31.80 |1284.62

Elevation Elevation Elevation
Station Left Side Station Center Station Right Side
292 + 80.94 [1304.62 1289 + 03.59 |1295.65 291 + 54.94 ]1299.34
292 + 38.94 |1303.72 288 + 70.26 |1293.85 291 + 12.94 [1298.91
291 + 96.94 |1301.68 288 + 36.92 [1292.55 290 + 70.94 ]1299.06
291 + 54.94 ]1299.45 288 + 03.59 [1292.74 290 + 28.94 1298.00
291 + 12.94 |1298.81 287 + 61.97 [1293.40 290 + 07.94 |1297.35
290 + 70.94 [1298.93 287 + 20.35 [1292.98 289 + 86.94 |1296.28
290 + 28.94 [1298.00 286 + 78.74 [1291.83 289 + 66.29 [1294.50
290 + 07.94 |1287.39 286 + 37.12 [1290.83 289 + 45.64 |1293.76
289 + 86.94 1296.35 285 + 95.50 [1290.44 289 + 03.59 |1295.04
289 + 66.29 [1294.28 285 + 53.88 [1290.33 288 + 70.26 |1295.79
289 + 45.64 [1293.95 285 + 12.26 [1289.96 288 + 36.92 |1295.60
289 + 03.59 [1294.81 284 + 70.64 |1289.28 288 + 03.59 |1295.55
288 + 70.26 |1293.77 284 + 29.03 [1288.52 287 + 61.97 |1294.57
288 + 36.92 [1292.81 283 + 87.41 |1287.97 287 + 20.356 [1293.96
288 + 03.59 [1291.05 283 + 45.79 |1287.51 286 + 78.74 |1293.86
287 + 61.97 [1290.06 283 + 12.46 [1287.20 286 + 37.12 [1293.70
287 + 20.35 {1289.79 282 + 79.12 [1286.73 285 + 95.50 [1293.18
286 + 78.74 |1289.65 282 + 62.46 [1286.39 285 + 53.88 |1292.57
286 + 37.12 [1289.01 282 + 45.79 |[1286.17 285 + 12.26 [1292.06
285 + 95.50 [1288.02 282 + 38.08 [1286.12 284 + 70.64 |1291.60
285 + 53.88 [1287.13 282 + 30.38 [1285.85 284 + 29.03 |[1291.08
285 + 12.26 (1286.59 282 + 25.25 |1285.15 283 + 87.41 (1290.44
284 + 70.64 (1286.33 282 + 20.12 [1294.72 283 + 45.79 [1289.81
284 + 29.03 [1286.02 281 + 76.12 [1282.46, 283 + 12.46 [1288.59
283 + 87.41 {1285.55 281 + 75.50 [1281.35 282 + 79.12 [1286.83
283 + 45.79 [1284.94 281 + 71.89 [1282.94 282 + 62.46 |1286.67
283 + 12.46 [1285.31 281 + 65.46 [1284.10 282 + 45.79 |1286.46
282 + 79.12 (1285.88 281 + 59.22 |1284.84 282 + 32.98 [1286.34
282 + 62.46 (1286.17 281 + 50.18 |1285.30 282 + 20.12 [1286.19
282 + 45.79 [1286.46 281 + 39.32 [1285.78 282 + 09.11 [1286.02
282 + 32.98 |1286.06 281 + 23.85 [1285.72 281 + 98.11 [1286.08
282 + 20.12 {1285.83 280 + 95.40 [1285.43 281 + 87.10 [1286.10
282 + 09.11 [1285.84 280 + 63.60 |1285.57 281 + 76.09 [1285.47
281 + 98.11 [1285.72 280 + 31.80 [1285.51 281 + 59.61 |1286.47
281 + 87.10 (1285.84 280 + 00.00 |1285.03 281 + 43.10 |1287.08
281 + 76.09 ]1285.37 281 + 27.20 |1286.41
281 + 59.61 {1285.37 280 + 95.40 [1284.80
281 + 43.10 |1286.37 280 + 63.60 |1284.37
281 + 27.20 |1286.53 280 + 31.80 [1284.59
280 + 95.40 {1284.99 280 + 00.00 |1284.71
+
+
+

280 + 00.00 11284.86
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Table 4 {Concluded)

280 + 63.60 1283.16

280 + 31.80 1283.37

00.00 1283.20

Elevation Elevation |Elevation
Station Left Side Station Center [Station Right Side
292 + 80.94 1301.88 289 + 03.59 1293.15 291 + 54.94 1298.48
292 + 38.94 1301.73 288 + 70.26 1292.56 291 + 12.94 1297.06
291 + 96.94 1300.45 288 + 36.92 1291.70 290 + 70.94 1296.21
291 + 54.94 1298.46 288 + 03.59 1291.28 290 + 28.94 1295.72
291 + 12.94 1297.18 287 + 61.97 1291.14 290 + 07.94 1295.72
290 + 70.94 1296.24 287 + 20.35 1290.76 289 + 86.94 1294.41
290 + 28.94 1295.63 286 + 78.74 1290.12 289 + 66.29 1293.29
290 + 07.94 1295.70 286 + 37.12 1289.48 289 + 45.64 1292.65
289 + 86.94 1294.42 285 + 95.50 1288.95 289 + 03.59 1292.43
289 + 66.29 1293.30 285 + 53.88 1288.52 288 + 70.26 1293.67
289 + 45.64 1292.70 285 + 12.26 1288.09 288 + 36.92 1293.63
289 + 03.59 1292.47 284 + 70.64 1287.63 288 + 03.59 1293.39
288 + 70.26 1291.57 284 + 29.03 1287.11 287 + 61.97 1292.70
288 + 36.92 1290.75 283 + 87.41 1286.59 287 + 20.35 1291.94
288 + 03.69 1289.58 283 + 45.79 1286.02 286 + 78.74 1291.22
287 + 61.97 1288.97 283 + 12.46 1285.64 286 + 37.12 1280.90
287 + 20.35 1288.79 282 + 79.12 1285.18 285 + 95.50 1290.62
286 + 78.74 1288.63 282 + 62.46 1284.86 285 + 53.88 1290.29
286 + 37.12 1288.09 282 + 45.79 1284.72 285 + 12.26 1289.96
285 + 95.50 1287.31 282 + 38.08 1284.68 284 + 70.64 1289.54
285 + 53.88 1286.50 282 + 30.38 1284.48 284 + 29.03 1288.98
285 + 12.26 1285.79 282 + 25.25 1283.94 283 + 87.41 1288.33
284 + 70.64 1285.22 282 + 20.12  [1281.17 283 + 45.79 1287.68
284 + 29.03 1284.81 281 + 76.12 1281.01 283 + 12.46 1286.43
283 + 87.41 1284.53 281 + 75.50 1280.98 282 + 79.12 1284.79
283 + 45.79 1284.21 281 + 71.89 1282.37 282 + 62.46 1284.66
283 + 12.46 1284.72 281 + 65.46 1283.48 282 + 45.79 1284.50
282 + 79.12 1285.22 281 + 59.22 1284.00 282 + 32.98 1284.37
282 + 62.46 1285.41 281 + 50.18 1284.04 282 + 20.12 1284.29
282 + 45.79 1285.43 281 + 39.32 1284.36 282 + 09.11 1284.16
282 + 32.98 1285.06 281 + 23.85 1283.99 281 + 98.11 1284.52
282 + 20.12 1284.80 280 + 95.40 1283.92 281 + 87.10 1284.19
282 + 09.11 1284.72 280 + 63.60 1284.11 281 + 76.09 1284.30
281 + 98.11 1284.43 280 + 31.80 1283.91 281 + 59.61 1285.41
281 + 87.10 1284.50 280 + 00.00 1283.47 281 + 43.10 1285.40
281 + 76.09 1283.90 281 + 27.20 1284.24
281 + 59.61 1284.06 280 + 95.40 1283.29
281 + 43.10 1284.64 280 + 63.60 1283.71
281 + 27.20 1284.88 280 + 31.80 1283.91
280 + 95.40 1283.96 280 + 00.00 1283.64
+
+
+
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Table 5 (Concluded)

280 + 63.60 (1282.93

280 + 31.80 |1282.61

Elevation Elevation Elevation
Station Left Side Station Center Station Right Side
293 + 64.94 {1303.52 289 + 66.29 [1293.28 292 + 38.94 |1301.34
293 + 22.94 {1302.51 289 + 45.64 (1292.82 291 + 96.94 {1300.44
292 + 80.94 [1301.12 289 + 03.59 [1292.54 291 + 54.94 [1298.62
292 + 38.94 [1301.30 288 + 70.26 |1292.16 291 + 12.94 {1297.11
291 + 96.94 |[1300.46 288 + 36.92 |1291.66 290 + 70.94 [1295.97
291 + 54.94 [1298.66 288 + 03.59 [1291.27 290 + 28.94 [1295.10
291 + 12.94 1297.17 287 + 61.97 {1290.92 290 + 07.94 [1294.92
290 + 70.94 [1295.99 287 + 20.35 ]1290.45 289 + 86.94 |1294.38
290 + 28.94 |1295.10 286 + 78.74 11289.85 289 + 66.29 (1293.06
290 + 07.94 {1294.94 286 + 37.12 |1289.25 289 + 45.64 [1292.566
289 + 86.94 |1294.44 285 + 95.50 [1288.73 289 + 03.59 (1292.49
289 + 66.29 [1293.10 285 + 53.88 |1288.29 288 + 70.26 |1293.16
289 + 45.64 |[1292.63 285 + 12.26 [1287.84 |288 + 36.92 {1293.40
289 + 03.59 |1292.45 284 + 70.64 |1287.36 288 + 03.59 [|1293.32
288 + 70.26 {1291.31 284 + 29.03 (1286.81 287 + 61.97 [1292.55
288 + 36.92 [1290.36 283 + 87.41 [1286.29 287 + 20.35 |1292.01
288 + 03.59 {1289.13 283 + 45.79 11285.76 286 + 78.74 11291.47
287 + 61.97 |1288.48 283 + 12.46 [1285.37 286 + 37.12 [1290.99
287 + 20.35 [1288.15 282 + 79.12 {1284.90 285 + 95.50 [1290.57
286 + 78.74 (1287.91 282 + 62.46 |1284.56 285 + 53.88 [1290.16
286 + 37.12 [1287.45 282 + 45.79 [1284.41 285 + 12.26 {1289.75
285 + 95.50 [1286.78 282 + 38.08 11284.31 284 + 70.64 [1289.34
285 + 53.88 [1286.06 282 + 30.38 |1284.15 284 + 29.03 [1288.90
285 + 12.26 [1285.40 282 + 25.25 [1283.44 |283 + 87.41 |1288.37
284 + 70.64 |1284.82 282 + 20.12 ]1290.73 283 + 45.79 [1287.77
284 + 29.03 |1284.31 281 + 76.12 [1281.01 283 + 12.46 [1286.56
283 + 87.41 |[1283.86 281 + 75.50 |1280.80 282 + 79.12 [1284.87
283 + 45.79 |1283.41 281 + 71.89 [1281.95 282 + 62.46 [1284.64
283 + 12.46 [1283.87 281 + 65.46 |1282.78 282 + 45.79 {1284.41
282 + 79.12 |1284.44 281 + 59.22 [1283.34 282 + 32.98 |1284.31
282 + 62.46 [1284.71 281 + 50.18 |1283.53 282 + 20.12 [1284.12
282 + 45.79 |1284.91 281 + 39.32 [1283.96 282 + 09.11 [1284.03
282 + 32.98 |1284.58 281 + 23.85 |1283.99 281 + 98.11  ]1283.92
282 + 20.12 [1284.33 280 + 95.40 11283.56 281 + 87.10 [1284.18
282 + 09.11 [1284.34 280 + 63.60 (1283.58 281 + 76.09 |1283.55
281 + 98.11 [1284.19 280 + 31.80 {1283.63 281 + 59.61 |1284.01
281 + 87.10 [1284.22 280 + 00.00 (1283.32 281 + 43.10 |[1284.88
281 + 76.09 [1283.97 281 + 27.20 |1284.43
281 + 59.61 |1283.72 280 + 95.40 {1283.31
281 + 43.10 |1284.09 280 + 63.60 [1282.80
281 + 27.20 [1284.63 280 + 31.80 [1283.33
280 + 95.40 |1283.57 280 + 00.00 [1283.28
+
+
+

280 + 00.00 {1282.63
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EXAGGERATED PERSPECTIVE OF
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Appendix A
The Hydrodynamic Model:
HIVEL2D

HIVEL2D is designed to simulate flow typical in high-velocity channels.
The model is a finite element description of the two-dimensional shallow-
water equations in conservative form. The model does not include Coriolis,
boundary, or wind effects as these are typically not important in high-velocity
channels.

Vertical integration of the equations of mass and momentum conservation
for incompressible flow with the assumption that vertical accelerations are
negligible compared to horizontal motions and the acceleration of gravity
results in the governing equations commonly referred to as the shallow-water
equations. The dependent variables of the two-dimensional fluid motion are
defined by the flow depth 4, the x-direction component of unit discharge p,
and the y-direction component of unit discharge g. These variables are func-
tions of the independent variables x and y, the two space directions, and time
t. Neglecting free-surface stresses and the effects of Coriolis force as these
are not considered important in high-velocity channels, the shallow-water
equations in conservative form are given as (Abbott 1979)":

20 % O m_» (A1)
ot dx ay
where
h
(A2)
g=1p
q

! References cited in this Appendix are included in the References at the end of the main
text.
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ad 2p,713
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where
P = uh, u being the depth-averaged x-direction component of
velocity
q = Vvh, v being the depth-averaged y-direction component of
velocity
g = acceleration due to gravity
0,,0,,,0,,,0,, = Reynolds stresses per unit mass where the first subscript

indicates the direction and the second indicates the face on
which the stress acts

p = fluid density
z, = channel invert elevation
n = Manning’s roughness coefficient

C, = dimensional constant (C, = 1 for SI units and C, = 1.486 for
non-SI units)
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The individual terms in the conservation equations are as follows:

a. Acceleration force per unit width:

2 2
ol o291 | p4

R "R
b. Pressure force per unit width:

1
—pgh?
208

¢. Body forces per unit area:

0z 9z
h——2 , pgh-2
pgh—— . p8 %

d. Bed shear stresses:

”PVP +q qyp’ + q*
and pg—__..__

C h 73 CO h 713

The Reynolds stresses are determined using the Boussinesq approach of
gradient-diffusion:

o, = 2V,?£
ox
_ ou av
0, =0, =7, [a_y + 5;] (A6)
ov
0, = 2V’6_y

where », is the eddy viscosity, which varies spatially and is solved empirically
as a function of local flow variables (Rodi 1980).
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A4

v, = C,ny8g h™%p*+q* (A7)

where C, is a coefficient that varies between 0.1 and 1.0.

This system of partial differential equations is solved using the finite ele-
ment method. The finite element approach taken is a Petrov-Galerkin formu-
lation that incorporates a combination of the Galerkin test function and a
non-Galerkin component to control oscillations due to convection. An integra-
tion by parts procedure is used to develop the weak form of the equations.
The weak form facilitates the specification of boundary conditions. The weak
form is given as:

3Q 0. 9% .00
b ,( [%7 Er T (A8)

+ ¢.B%% +yH ] a9, + §o, (Fn, + Fan)] "
I‘Z

where the variables are understood to be discrete values and

e = subscript indicating a particular element
= domain

¥ = ¢ + ¢, = test function

¢, = Galerkin part of the test function

I = identity matrix

¢; = non-Galerkin part of the test function
(n,, n)) = n = unit vector outward normal to the boundary I',

and

30 (A9)

i
«
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Natural boundary conditions are applied to the sidewall boundaries through the
weak statement. The sidewall boundaries are "no-flux" boundaries; that is,
there is no net flux of mass or momentum through these boundaries. These
boundary conditions are enforced through the line integral in the weak
statement.

Petrov-Galerkin Test Function

The Petrov-Galerkin test function y;, is defined (Berger 1993) as:

V=l + v (A10)

where

o, 4 0¢,
. =0 AxﬁA+Ay.._d_>lB
! ox ay

(A11)

where ( is a dissipation coefficient varying in value from O to 0.5, ¢ is the
linear basis function, and Ax and Ay are the grid intervals. A detailed
explanation of this particular test function, in particular A and B, is given in
Berger (1993).

Shock Capturing

Because a lower value of 8 (8 = (,) is more precise, a large value of 8
(B = Bgy = 0.5 where B, and B, are the Petrov-Galerkin parameters for
smooth flow and for shocks) is applied only in regions in which it is needed.
HIVEL2D employs a mechanism that detects shocks and increases 3 automati-
cally. Therefore, B¢, is implemented only when needed as determined by
evaluation of the element energy deviation. In a similar manner, the eddy
viscosity coefficient C varies from Cg,, to Cg, the effect being that eddy
viscosity is increased only in areas of greatest element energy deviation.

Temporal Derivatives

A finite difference expression is used for the temporal derivatives. The
general expression for the temporal derivative of a variable, @, is:

(A12)
_3_1‘ tm+1 — tmo— tm—l

[an] =~ o [_____Q;M _ Q]’"] +(1 - @ [__—Qjm _ Q;"'l
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A6

where j is the nodal location and m is the time-step. An « equal to 1 results
in a first-order backward difference approximation, and an « equal to 1.5
results in a second-order backward difference approximation of the temporal
derivative.

Solution of the Nonlinear Equations

The system of nonlinear equations is solved using the Newton-Raphson
iterative method. Let R; be a vector of the nonlinear equations computed
using a particular test function y; and using an assumed value of Q.. R, is the
residual error for a particular test function i. Subsequently, R, is forced
toward zero as:

k
Ri ok - R (A13)

J !

3Q;

where the derivatives composing the Jacobian are determined analytically.
This system of equations is solved for Aq]{c and then an improved estimate for
Q" is obtained from:

g - 0 + Ag (AL4)

where k is the iteration number. This procedure is continued until conver-
gence to an acceptable residual error is obtained.
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