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Preface

The study described herein was performed at the U.S. Army Engineer
Waterways Experiment Station (WES) during June 1991 through July 1992 for
Headquarters, U.S. Army Corps of Engineers (HQUSACE), as part of the
Flood Control Structures Research Program. Funds were allotted under Civil
Works Investigation Work Unit 32543, "Riprap Stability under Impinging
Flow."

This study was accomplished under the direction of Messrs. F. A.
Herrmann, Jr., Director of the Hydraulics Laboratory; R. A. Sager, Assistant
Director of the Hydraulics Laboratory; and G. A. Pickering, Chief of the
Hydraulic Structures Division, Hydraulics Laboratory. Mr. Thomas E. Munsey
was HQUSACE Program Monitor, and Dr. Bobby J. Brown, Chief, Hydraulic
Analysis Branch, Hydraulic Structures Division, was Program Manager at
WES. The prototype data were collected by Dr. S. T. Maynord, project
engineer, Spillways and Channels Branch, Hydraulic Structures Division;
Messrs. D. M. White, Spillways and Channels Branch; and M. T. Hebler and
J. E. Hall, Hydraulic Analysis Branch, under the direct supervision of
Mr. N. R. Oswalt, Chief of the Spillways and Channels Branch. This report
was written by Dr. Maynord.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.



Conversion Factors, Non-Sl to
S| Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By To Obtain
cubic feet 0.02831685 cubic meters
degrees (angle) 0.01745329 radians
feet 0.3048 meters
inches 2.54 centimeters
miles (U.S. statute) 1.609347 kilometers
pounds (mass) 0.4535824 kilograms
square feet 0.09290304 square meters




1 Introduction

Background

Many streams can be found in which the channel planform results in a high
degree of hydraulic irregularity. A prime example is a braided planform in
which multiple channels exist over a wide range of flow conditions. These
multiple channels tend to migrate due to erosion and deposition processes
typically found in alluvial channels. Migration rates can be quite rapid when
upstream midchannel islands and bars are breached or when logjams give way.
Channel migration often leads to flow being directed against bank lines at
large acute angles, which is referred to herein as flow impingement. Flow
impingement results in significant stress on the bank line, and channel
protection is often required to maintain channels in a fixed position. The
maximum attack often occurs at intermediate rather than high discharges
because high discharges tend to submerge the midchannel islands and bars and
the flow is more generally directed in a downstream direction. When stages
exceed the tops of the midchannel bars, the channel area increases rapidly and
velocities do not show the same rate of increase with stage. While the
locations of flow impingement show some degree of regularity, entire channel
reaches must often be protected because the locations of flow impingement
cannot be predicted with enough certainty to leave some areas unprotected. At
impingement sites, bank lines are subjected not only to high velocity but also
to deep scour, and undermining of bank protection is a common occurrence.

An example where flow impingement is a problem is the Snake River near
Jackson, WY (Figure 1), which is a braided stream with levees on one or both
sides of the channel that are almost completely protected with riprap
revetment. The levees in this reach average about 1,200 ft* apart. The river
appears in some areas to meander between the levees, while in other areas the
braided planform is evident. This upper reach of the Snake River has a slope
of about 19 ft/mile and the peak runoff is snowmelt, which generally occurs in
early June. A plot of discharge versus date for various exceedance percentages
at the gage known as Below Flat Creek is shown in Plate 1. The mean peak
discharge is about 12,000 cfs, and 90 percent of the years have a peak

1 A table of factors for converting non-SI units of measurement to Sl units is found on
page v.
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Figure 1. Location map

Objective and Scope

discharge of 18,000 cfs or
less. In 1986, a major event
occurred with a peak dis-
charge of 25,600 cfs. The
largest known flood occurred
in 1894 with an estimated
peak of 41,000 cfs. The bed
material in this reach is sand
and gravel ranging up to a
maximum size of 6-10 in.
Unfortunately, bed material
gradation data are not avail-
able for this reach. The size
of the riprap on the levees
varies widely as does the
unit weight of the stone.

The larger stone in the rip-
rap gradation is placed near
the toe of the slope. The
levee cross section presently
used in this reach is shown
in Plate 2.

The overall objective of this study is to develop guidance for design of
riprap under flow impingement. The scope of the study reported herein was to
observe and document the characteristics of flow impingement zones including
nearbank velocities and depths, water-surface slopes, and alignments and to
develop methods for estimating impinged flow velocities and scour in braided
channels. Information obtained from this field study will be used to investi-

gate riprap size in a physical model. This report {)resents details and
information in addition to that given in Maynord.

lsT Maynord. (1992). "Flow impingement velocities, Snake River, Wyoming." Hydraulic
Engineering: Saving a Threatened Resource—in Search of Solutions; Proceedings, Hydraulic
Engineering Sessions at Water Forum ’92, Baltimore, MD, August 2-6, 1992. Marshall
Jennings, Nani G. Bhowmik, ed., American Society of Civil Engineers, New York, 139-144.
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2 Description of Tests and
Data

On 5 June 1991, the river was inspected and 14 areas of significant im-
pingement were found in the project reach. Velocity measurements were made
at eight of these sites, as shown in Figure 2. Future efforts of this type should
also obtain aerial photographs of the project just before measurements are
conducted.

WILSON BRIDGE

| e —] s AN
0 1 GROS VENTRE RIVER /
SCALE, MILES /

Figure 2. Snake River project reach and impingement sites

The measurements reported herein were collected between 6-8 and
10-12 June 1991, which was the peak runoff period for 1991. Plate 1 shows
the mean daily discharge at Below Flat Creek on the Snake River for May,
June, and July 1991. The mean daily discharge at Below Flat Creek
(downstream of Wilson Bridge) was 14,000 cfs on 6 June, 14,500 cfs on 7 and
8 June, 15,000 cfs on 10 June, 15,500 cfs on 11 June, and 16,000 cfs on
12 June. The discharge began to fall on 13 June. Therefore, 1991 had an
above-average runoff. The discharge near the mouth of the Gros Ventre River
was about 2,100 cfs during 6-12 June 1991. The water-surface elevation
during 6-12 June was near the top of many of the midchannel bars.

Price and electromagnetic velocity meters were mounted on lead fish and
supported by an extendable boom crane that could reach up to 40 ft from the
bank line, as shown in Figure 3. Even though the electromagnetic velocity
meter could measure velocity in two directions, only the velocity parallel to
the orientation of the lead fish was used in this investigation. Initially, a

Chapter 2 Description of Tests and Data



Figure 3. Crane at velocity site B-4, looking downstream

100-1b lead fish was used, but this was swept too far downstream and a second
lead fish weighing 140 1b was attached below the first one.

Future studies should use a single 200- to 250-1b lead fish for the high
velocities encountered in this study. When near the bank line in shallow
depths, the lead fish exhibited erratic side-to-side movement, which made
velocity and depth measurements difficult. A graduated tape was attached
both horizontally and vertically to the cable supporting the meter to determine
the position of the meter. Bottom position was noted when the fish hit bottom
and the cable deflected. Future studies should consider some type of
electronic depth meter. The velocity meter had to be frequently raised to
prevent damage to the velocity meter from debris. The cable supporting the
velocity meter should not be strong enough to pull the crane over if large
debris hangs up on the meter.

The two types of impingement sites that were observed on the Snake River
were dependent on the alignment of the levee. Velocity sites A-1, A-2, B-4,
D-1, D-2, and E-1 were impingement sites where the levee was straight.
Velocity sites B-1 and E-2 were sites in a curved part of the levee having a
outer bank line radius of 300-500 ft. In most cases the typical site had a wide,
shallow approach channel that gradually converged toward the impingement
site. The angle of the approach flow ranged up to 70 deg. Plates 3-10 show
schematics of the impingement sites. Figures 4-8 show impingement sites.

Velocities were taken at the apparent point of main attack (designated
sta 5+00 with stations increasing in a downstream direction), and additional
stations were taken upstream and downstream of that point. Water-surface
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Figure 5. Site A-2, looking upstream
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Figure 6. Site B-1, looking upstream

Figure 7. Site E-2, looking upstream
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Figure 8. Site B-4, looking upstream

elevations relative to an arbitrary datum were measured upstream and down-
stream of sta 5+00 to establish water-surface slope. Water-surface elevations
were measured at the bank line with a level rod. Plots of observed velocities
at each site are shown in Plates 11-37. Water-surface profile plots are shown
in Plates 38-47.

Comments about each site are presented in the order of the initial measure-
ment as follows:.

a. Site E-1 (6 June 1991). At site E-1, almost all of the riverflow was in a
single channel against the levee, but the channel width was relatively
large. This site was not so much an impingement as it was a concentra-
tion of flow on one side of the river. This was the initial measurement
site and was chosen because velocities appeared to be low compared to
the other sites. Velocities were taken at site E-1 with only the 100-1b
lead fish, and water depth could not be determined with any confidence
because of the large cable deflection in the downstream direction with
the single fish.

b. Site D-1 (6 and 12 June 1991). At site D-1, almost all of the flow in
the river was in a single channel against the levee. The impingement
angle was about 40 deg, and a significant amount of flow was entering
the impingement site from a second channel parallel to the levee. At
this site, the single lead fish was swept too far downstream, and a
second lead fish weighing 140 Ib was added below the first fish and
used for all remaining tests. The electromagnetic velocity meter was
18 in. above the bottom of the lower fish. This site had velocities up to
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16 ft/sec, but the water-surface slope measured along the bank line did
not show the large values measured at other sites, possibly because
measurements were limited to 100 ft upstream of sta 5+00. Measure-
ment of surface velocity based on surface debris yielded a velocity of

13 ft/sec between sta 4+00 and 6+00. The debris velocity was measured
if its position relative to the bank was near the position of the maximum
measured velocities. The channel bottom observed on 6 June is shown
on the 12 June plot (Plate 32).

c. Site A-1 (7 and 10 June 1991). Most of the flow in the river was
against the levee at this site, but some flow was in channels in the
middle of the levees. The impingement angle was about 45 deg and
flow was also entering the impingement site from a second channel
parallel to the levee on 7 June with a lesser amount on 10 June. Surface
float velocities about 30 ft from the bank line averaged 11 ft/sec
between sta 4+00 and 6+00. Velocities and water-surface elevations
were similar on 7 and 10 June, but some scour occurred between 7 and
10 June at sta 4+00. Measurement of riprap size at site A-1 showed an
average Wy, of about 150 Ib. Riprap size was not measured at other
locations, but surveys by the U.S. Army Engineer District, Walla Walla,
in 1987 show the average size to be less than 100 Ib.

d. Site A-2 (7 and 10 June 1991). At this site, a significant amount of the
riverflow was in other channels away from the levee. The impingement
angle at this site was about 60 deg. Surface float velocities on 7 June
were about 13 ft/sec between sta 4+00 and 6+00. Significant differences
in the flow impingement were evident from 7 June compared to 10 June
indicating the dynamic nature of braided streams. Velocities measured
on 10 June were 60-70 percent of those measured on 7 June, and the
water-surface elevations had increased by up to 1.5 ft. The maximum
impingement point had moved downstream about 200 ft. The cause of
these changes was not apparent from the on-ground inspection.

e. Site B-1 (8 and 11 June 1991). A significant portion of the total
riverflow was in channels away from the levee at this site. The large
impingement angle of about 70 deg resulted from the curved levee
alignment. Surface float velocities were as follows:

Sta Velocity, ft/sec
3+00 to 4+00 9.0
4+00 to 5+00 11.0
4+50 to 5+50 12.0
5+00 to 6+00 125
5+50 to 6+50 ‘ 11.0
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Side slope velocities on 8 June were relatively large. Velocities at
sta 4+50 were much smaller on 11 June than on 8 June indicating some
type of change upstream.

f. Site B-4 (8 and 11 June 1991). Most of the riverflow was against the
levee at this site. The flow impingement angle was about 50 deg on a
relatively straight levee alignment. Surface float velocities were as

follows:
Sta Velocity, ft/sec
3+00 to 4+00 11.0
4400 to 5+00 125
5+00 to 6+00 13.0
6+00 to 7+00 12.0

The bottom elevation on 8 June was not determined, and the bottom
shown (Plates 27 and 28) is from the 11 June measurements. Water-
surface measurements were similar on 8 and 11 June.

g Site E-2 (12 June 1991). Most of the riverflow was against the levee at
this site, and the curved levee alignment caused an impingement angle
of about 60 deg. Surface float measurements were as follows:

Sta Velocity, ft/sec
3+50 to 4+50 10.0
4+00 to 5+00 . 105
4+50 to 5+50 11.0
5+00 to 6+00 115
5+50 to 6+50 13.0
6400 to 7+00 13.0

Sta 5+70 exhibited relatively large depths at the toe (15 ft) and high
velocities up on the side slope (>12 ft/sec).

h. Site D-2 (12 June 1991). The flow approaching site D-2 was only a
portion of the total riverflow, and the impingement angle was about
60 deg. Velocities were measured at only sta 5400, and surface float
velocities were as follows:

Chapter 2 Description of Tests and Data
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Sta Velocity, ft/sec
3400 to 4+00 9.0
4+00 to 5+00 11.5
5+00 to 6+00 125
6+00 to 7+00 12.0

Bottom elevations could not be detected with enough certainty to record

values at this site.

A comparison of velocities at site A-2 was made between the electro-
magnetic velocity meter that was used in all of the other tests and a Price
current meter. The Price meter measurements are shown in Plate 48. While it
was almost impossible to reposition the Price meter in exactly the same posi-
tion as the electromagnetic meter, the agreement was fair with Price meter
readings ranging from 92 to 117 percent of the electromagnetic velocity meter

readings.

Chapter 2 Description of Tests and Data



3 Analysis of Data

The maximum local water-surface slope over a distance of 100 ft at all
impingement sites ranged from 18 to 82 ft/mile with an average of 45 ft/mile
or about 2.4 times the overall stream gradient.

Most sites had maximum point velocities exceeding 14 ft/sec. Maximum
depth-averaged velocity exceeded 12 ft/sec at many sites, and similar to sharp
bendways, depth-averaged velocity remained high over a significant part of the
side slope. Velocity profiles were skewed so that the maximum point velocity
over the toe of slope often occurred at 0.4-0.6 depth above the bottom. This
type of velocity profile is typical of sharp bendways and would place a much
greater stress on a revetment than a typical profile having the maximum point
velocity closer to the water surface.

Part of the objective of this study was to develop methods for estimating
impinged flow velocities in braided channels. One of the techniques used in
meandering channels is to relate the maximum velocity in a bend to the
average channel velocity at the bend entrance. In sharply curved bends the
ratio of maximum side slope velocity V. to average channel velocity generally
ranges up to 1.6. V. in the riprap design procedure given in Engineer Manual
(EM) 1110-2-16011 s the depth-averaged velocity at 20 percent up the slope
from the toe. Impingement sites are simply poorly aligned bendways.
Defining the average channel velocity in a braided channel approaching the
impingement point is difficult compared to single channels. One option would
be to use the average channel velocity from an HEC-2 water-surface profile
computation for a discharge of 15,000 cfs. Water-surface profiles were
previously computed by the Walla Walla District for a discharge of about
25,000 cfs. At this discharge, the midchannel bars are submerged and flow is
generally parallel to the levees. At a discharge of 15,000 cfs, flow is confined
to the single or multiple braided channels that are not parallel to the levees.

To use HEC-2 for flow within the braided channels would require cross-
section data far beyond what was used for the 25,000-cfs discharge. A method
is needed for determining the average channel velocity for intermediate flows.

1 Headquarters, U.S. Army Corps of Engineers. (1991 (1 July)). "Hydraulic design of flood
control channels,” EM 1110-2-1601, U.S. Government Printing Office, Washington, DC.
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One possibility is to use the observed cross sections in HEC-2 to determine
the cross-sectional area when the stage is near the top of the midchannel bars,
which was the stage when the field measurements were conducted. This area
was selected because the most severe impingement is generally assumed to
occur when the discharge produces a sta%e near the top of the midchannel bars.
The Committee on Channel Stabilization™ states that "revetment size should
be based on bank velocities corresponding to design water surface with con-
sideration being given to the fact that direct impingement of moderate flows
(15,000 cfs) may cause local damage more severe than the design flows."
Plates 49-52 show eight cross sections downstream of the Gros Ventre River
along with a stage near the tops of the midchannel bars. Unfortunately only
one of the HEC-2 cross sections occurred near the velocity sites reported
herein. Measurements at site B-4 coincided with the cross section at sta 7+05.
The average channel area below the stages observed during June 1991 was
about 2,000 sq ft. Since the stage was close to the tops of the midchannel
bars, the measurements reported herein were close to the maximum in terms of
levee attack and velocity magnitude. Using a discharge of 15,000 cfs for the
reach downstream of the Gros Ventre River and an average channel area of
2,000 sq ft resulted in an average channel velocity of 7.5 ft/sec. The
maximum depth-averaged velocity measured near the toe of the riprap revet-
ment was about 11.9 ft/sec, giving a ratio of maximum depth-averaged velocity
to average channel velocity of about 1.6, which is reasonable based on results
from meandering channels. More data are needed to test this approach. Addi-
tional data are needed at discharges both less than and greater than the dis-
charges measured herein to test the hypothesis that the impingement is most
severe wWhen the stage is near the tops of the midchannel bars.

Another objective of this study was to develop techniques for estimating
local scour at impingement points. The lack of bed material data prevents the
development of any general guidance, but information specific to the Snake
River can be developed from the observed data. Plate 53 shows the tops of
the main channel bars and the deepest point in the cross section, both taken
from survey data collected in 1988. The detailed channel data suggest that the
data were taken during low-flow conditions. The difference between the two
lines ranges from 4 to 14 ft. The velocity plots presented herein show a
maximum depth below the 15,000-cfs water level of about 15 ft. If the
15,000-cfs flow rate is near the conditions of maximum levee attack, then the
design scour for the Snake River reach shown in Figure 1 should be a
minimum of 17 ft below the elevation of the midchannel bars as defined in
Plate 53. This allows a 2-ft margin below the deepest observed scour.

1" Committee on Channel Stabilization, Corps of Engineers, US. Army. (1974). "Jackson
Hole, Wyoming, flood control project,” Technical Report No. 11, U.S. Army Engineer Water-
ways Experiment Station, Vicksburg, MS.
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4 Summary and Conclusions

Flow impingement on the Snake River results in depth-averaged velocity
exceeding 12 ft/sec near the revetted levees. Maximum point velocities were
up to 16 ft/sec. Typical impingement points had flow approaching the levee at
angles up to 70 deg. Water-surface slopes at the impingement sites average
2.4 times the average slope of the stream.

A method for estimating impingement velocities is proposed herein based on
average channel velocity with a flow producing a stage near the tops of the
midchannel bars. This average velocity should be multiplied by 1.6 to obtain
maximum impingement velocities. Additional data are needed on other im-
pingement streams as well as data to test the hypothesis that stages near the
top of the midchannel bars produce the most severe levee attack.

General guidance on scour depths could not be developed from these data
because of the lack of bed material data. Results from these measurements
and previous cross sections obtained in 1988 suggest that if the intermediate
flows reported herein produce the most severe levee attack, design scour
depths should be a minimum of 17 ft below the tops of the midchannel bars.

Chapter 4 Summary and Conclusions
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Ll eeld

DISTANCE BELOW WATER SURFACE, FT

DEPTH-AVERAGED

o VELOCITY, FT/SEC 5.5 9.8 - 100 10.8
m -~ * 80 « 10,5 « {10 s 120
g 35
4 — 40 . 100 . 106 * 120
6 — ¢« S0 v 107 ¢ 121
g . 95 . 113
10 — * 90
120 VELOCITY IN FT/SEC
12
14
8.8 13.8 208 26.8
16 I T B — | — I I _
0 5] 10 15 20 25 30 35 40
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA A2-4+00
7 JUNE 1991
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02 _ske|d

DISTANCE BELOW WATER SURFACE, FT

10

12

14

16

DEPTH-AVERAGED

VELOCITY, FT/SEC 5.9 7.5 - 75 8.2
—] s 7.0 « 85 ¢ 93 * 93
-~ ¢ 83 * 90 * 90
¢ 65
—] « 88 ¢ 86
] s 75 s 90
] e ‘513 ¢ 75
- 120 VELOCITY IN FT/SEC ‘ . 65
i 75 125 205 305
1 ; | |
1 | | 1 | | 1 !
0 S 10 15 20 25 30 35 40
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA A2-5+00

10 JUNE 1991




i¢ okeld

DISTANCE BELOW WATER SURFACE, FT

10

12

14

16

DEPTH-AVERAGED

VELOCITY, FT/SEC 9.7 96 - Ol 8.6 8.4
- » 18 . 115 . 100 . 85 .72
.15 . 18
_ * 90 . 100 . 100 . 85
— . 104 . 100 . 100
_ . 97 . 100
_ . 90 . 101
- 120 VELOCITY IN FT/SEC
105 145 205 265 315
T T 'l - — - I |
0 5 10 15 20 25 30 35 40
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA B1-4+30
8 JUNE 1991




¢g _oikeld

DISTANCE BELOW WATER SURFACE, FT

10

12

14

18

DEPTH-AVERAGED

VELOCITY, FT/SEC 9,7 11.7 - 10.9 a1 9.5
— s 130 . 13,0 * 107 ° 80 . 95

. 86
— - 132 o127 ° 1ol . 102
— . 121 . 128 . 110 . 110

. 105
— . 102 "V
- 120 VELOCITY IN FT/SEC
9.8 158 20.8 278 328
T T T T I ; T ' ] =
0 5 10 13 20 25 30 35 40
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA B1-5+00

8 JUNE 1991




g€c_deld

DISTANCE BELOW WATER SURFACE, FT

DEPTH-AVERAGED

0 VELOCITY, FT/SEC 9.0 10,8 11.3 3.9 9,7
2 — . HAH% e 132 + 128 * 119 e 115
' .19 . 108 . 100
4 - . 100 . 120 . 100
« 110
m —
m —
10
- 120 VELOCITY IN FT/SEC
12
14 —
7.6 :h.m 18,6 25.6 316
16 _ T I T T — _ ]
0 5 10 15 20 25 30 35 40

DISTANCE FROM BANK LINE, FT

VELOCITY PROFILE
STA B1-6+00

8 JUNE 1991
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GZ_8leld

DISTANCE BELOW WATER SURFACE, FT

10

12

14

16

DEPTH-AVERAGED

VELOCITY, FT/SEC 75 8.9 - 8.4 9.3 9.6
— s B89 « 103 + 80 e 97 * 105
— « 92 s 90 *+ S8 o 10.0
— « 104 e 10,2 + 100
» 105
- e 95 e 105
B . 72 * 82
120 VELOCITY IN FT/SEC
7.8 1.8 1.8 24.8 328
T _ — I T 3 _ _ _ _
0 5 10 15 20 25 30 35 490
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA B1-5+00

11 JUNE 1991
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82 ale|d

DISTANCE BELOW WATER SURFACE, FT

10

12

14

16

DEPTH-AVERAGED

VELOCITY, FT/SEC 88 1.9 1.9 10.7 108
— o 10.5 « 15.0 e 142 * 13.0 * 13.0
- ° 6.0 e 147 » 145 o 128 « 128
— * 140 e 141 e 128 « 120
BOTTOM LINE DATA . 1o
TAKEN FROM STATION '
s 120 s 130 s 118 * 121
B4-5+00 11 JUNE /‘\
— * 100 o 12,0 * 105 + 1.0
120 VELOCITY IN FT/SEC
— + 80 « 10.0 s 97 » 10,0
85 17.5 235 28,5 325
T T I : I 7 = ' I 1
0 5 10 15 20 25 30 35 40
DISTANCE FRIOM BANK LINE, FT
VELOCITY PROFILE
STA B4-5+00

8 JUNE 1991




DISTANCE BELOW WATER SURFACE, FT

62 _sSield

DEPTH-AVERAGED

VELOCITY, FT/SEC 1.7 102 g~ 108 105
— « 135 . 135 . 138 . 133
4 — ¢ 120 . 123 . 126 . 125
— . 110 . 114 . 120
— ¢ 50 . 100 e 113
— . 100 * 100
- 120 VELDOCITY IN FT/SEC
- *» 82 . 87
68 11.8 16.8 20.8
1 i i 1 Nm.m_
| [ I T I | I 1
0 5 10 15 20 £5 30 35 40

DISTANCE FROM BANK LINE, FT

VELOCITY PROFILE
STA B4-4+00

11 JUNE 1991
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GE sleld

DISTANCE BELOW WATER SURFACE, FT

0 -
e7p * W04 102 . 108
2 - . 7.4 99 105 ”M..N
<60 * 95 95 . 10.3
4 o - 80 9.7 . 102
. .
m —
10 —
12 -
14 —
90 240
16 . I T T T _
0 10 20 25 30 35 40
DISTANCE FROM BANK LINE, FT
VELOCITY PROFILE
STA E1-5+00
6 JUNE 1991
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8€ aleld

e 100 T MAXIMUM SLOPE OVER 100 FT = 33 FT/MILE = 0.0062 FT/FT
I, _
= 98
=
& I96.69 96.65 96.20
N 96 — T 9635 9640 9585 9570
g 9597 o= 9528 osmm
- = 9535 9529
E kSLDPE o.oosal| 9516 9513  g5qp 9B 9462
94 T ‘]’ L) ] T —I 1 l 1 I -1 l
2+00 3+00 4+00 5400 6+00 7+00 8+00
LEGEND STATION, FT

* 7 JUNE 1991
= 10 JUNE 13991

NOTE: ELEVATIDN IS RELATED
TO AN ARBITRARY BATUM

WATER-SURFACE ELEVATION
SITE A-1
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Lv_oleld

MAXIMUM SLOPE OVER 100 FT = 45 FT/MILE = 000835 FT/FT

160 —
. R
& 98
S
&~ 7 ~95w
95.04
Eg
Ej 94 9354341 9339
SLOPE = 0.0085 | iy 9309 9313
) k 2327 9314 92.42
1 9280 9286 928 ;
Se T I T T T I T T T T T ?91.92
2+00 3+00 4+00 S5+4+00 6+00 7+00 8+00
LEGEND STATION, F'T
* 8 JUNE 1991
NOTE: ELEVATION IS RELATED
* 11 JUNE 1991 TO AN ARBITRARY DATUM
WATER-SURFACE ELEVATION
SITE B—4
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ELEVATION IN FEET NGVD

ELEVATION IN FEET NGVD

6130.0

6125.0

6120.0

6115.0

6110.0

6165.0

6162.5

6160.0

6157.5

6155.0

6152.5

6150.0

6147.5

|

TOP

OF MIDBCHANNEL

BAR

= El

6117.5

>

...f

|/

WY

B AREA BELOW EL 6115 =
] 1,776 SQ FT
T T 771 1T 11 T T 171 T T T 1T 11 1T T1 11

0 250 500 750 1000 1250 1500 1750
DISTANCE, FT
STA 5+05

EI \ TOP OF MIDCHANNEL |BAR = EL |6154 l

. | W‘:—T

- S ]

-] —k AREA BELOW HL 6154 = A

: V N7 2,100 SQ[FT ¥ W

- 17 T 1 717 T T 1T 1 1T 7 1 T T 71 1 |

0 250 500 750 1000 1250 1500
DISTANCE, FT
STA 5+95

CROSS SECTIONS

STA 5+05 AND 5+95

Plate 49



6190.0

6185.0

6180.0

6175.0

ELEVATION IN FEET NGVD

6170.0

6200.0

6195.0

6190.0

6185.0

ELEVATION IN FEET NGVD

6180.0

6175.0

—

NP OF MIDG

HANNEL BA

-

o

] AREA BELDW EL 61795 = 2,540|SQ FT
17 17 7T T 17 11711 17T 17T 7171711171117 1777177
0 250 500 750 1000 1250 1500
DISTANCE, FT
STA 6+59
i TOP OF MIDCHANNEL BAR|= EL 61895 /‘
F
-,/\ [
N N X
. XT \_,/\\/ ™ ’M\;%
T | W
] E AREA BELOW EL 61B9.5 = 176D SQ FT
T I T T 1 7 1T 1 1 1T 177 T 1T T T T T
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