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the field equation is implicitly approximated. The result is a theory that can 
predict the shape and behavior of waves up to almost breaking conditions. The 
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By developing the unrestricted Green-Naghdi theory of fluid sheets, this 
research presents a new wave theory consisting of a coupled, nonlinear set of 
partial differential equations and integrates these in time and space to simulate 
either regular or irregular real waves. The theory and model have been shown to 
reproduce with engineering accuracy the evolution of a wave of permanent form, 
from small amplitudes up to almost breaking conditions. The theory presented is 
for a nonlinear numerical wave tank in which the seabed topography profile can 
be arbitrary and very irregular, and up to 20 wave gages can be positioned at 
will inside the computational domain to obtain snapshots and profiles of wave 
records. 
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made to be versatile to permit decision makers, designers, and analysts to assess 
the various aspects of waves and wave-structure interaction problems arising in 
Army applications. One can evaluate, for instance, the effect of submerged 
obstacles during military landings on the train of waves approaching a beach or 
landing zone, or the reflection of waves and forces on sea walls or spillway 
hydraulic gates, and the time history of bottom-mounted pressure gage 
measurements for estimation of surface wave conditions in coastal design 
projects. The theory is particularly suited for the violent collision of waves 
with natural and man-made structures, and their impact on preventive and 
defensive hydraulic structures. 
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APPLICATION OF THE GREEN-NAGHDI THEORY OF FLUID SHEETS TO 
SHALLOW-WATER WAVE PROBLEMS 

PART I: THEORETICAL BASIS 

Introduction 

This is the first report in a series prepared for the Technical Director, U.S. Army Engineer 
Waterways Experiment Station (WES) for the project entitled Time-Dependent Nonlinear Free-Surface 
Wave Modeling conducted under the Director's auspices as part of the In-House Laboratory 
Independent Research Program (Project A91D per Office of Technical Planning and Programs 
guidelines). This report is a joint effort between researchers at the WES Coastal Engineering 
Research Center (CERC) and the University of California, Berkeley, under Purchase Order 
DACA39-91-M-5515. It is intended to provide a discussion and critique of various approaches for 
simplifying complex hydrodynamic boundary value problems, a derivation of the general 
Green-Naghdi (GN) theory of fluid sheets, theoretical documentation of the equations of motion of 
two-dimensional (2-D) shallow-water waves for GN levels 1 and 2, and a concise description of the 
numerical methods used to integrate these governing equations. 

The intent of the authors was to assemble a document that a fluid mechanician can use to 
understand this relatively new method and its application to complex shallow-water wave problems. 
The entire theoretical formulation presented in this report is new, greatly improving upon several 
previously published papers or Ph.D. dissertations completed at the University of California, 
Berkeley. The derivation of the theory is in the form of a tutorial in which all of the intermediate 
steps are included, since no textbook or article is available in this level of detail. 

During the two decades since its introduction (Green, Laws, and Naghdi 1974), the theory of 
fluid sheets has been applied to a variety of fluid flow problems. These include studies of waves in 
shallow and deep water (Green and Naghdi 1986 and 1987; Shields and Webster 1988), the flow 
beneath planing boats (Naghdi and Rubin 1981), the waves created by a moving pressure disturbance 
(Ertekin 1984; Ertekin et al. 1984 and 1986) and wave reflection by obstacles (Marshall and Naghdi 
1990), to name a few. In particular, the development of fluid sheet theory in a Eulerian frame 
(Green and Naghdi 1984) made this theory much easier to apply to fluid flow problems. The reader 
is referred to the pair of papers by Green and Naghdi (1986 and 1987) for a definitive exposition of 
the theory, and especially for its application to water wave problems. 

Overview of Theory 

Alternative approaches, with a variety of approximations and assumptions, exist for 
calculating wave motion in coastal waters. The classical equations of motion for fluid flow in three 
dimensions are a continuum model which embodies many assumptions. For ordinary fluids, such as 
water, the Navier-Stokes equations are universally recognized as a good model for the resulting flows. 
However, these equations are not "exact" equations but are an idealization similar in spirit to the 
idealization of space by Euclidean geometry. Even for simple free-surface problems, these equations 
and their simpler inviscid counterparts, the Euler equations, are difficult to solve. One popular 



approach has been to systematically simplify the three-dimensional equations and their boundary 
conditions through a formal perturbation analysis until the resulting system can be solved. The 
theories of water waves developed by Stokes, Boussinesq, and others follow this type of development. 

Green-Naghdi fluid sheet theory offers an alternative in the form of a new model, that of a 2- 
D continuum of unsteady 3-D flows. Although the examples which will be cited here involve inviscid 
fluids, the development of GN theory is not at all limited to such fluids. The discussion below is 
aimed at exploring the difference between these two very different paths to simplification of the 
analysis of fluid flow problems. In either case, it is anticipated that the solutions obtained are 
approximate ones, since there really is no substitute for solving the three-dimensional (3-D) equations 
exactly. Both approaches are called approximations, although it is clear that the meaning is not the 
same for each. 

Before introducing details on the nature of GN theory, it is useful to first discuss the notion of 
approximation in general. An approximation approach for analyzing a given problem is usually 
chosen based on its ability to predict the phenomena that one is interested in and on its ease of use. 
The selection of an approximation scheme can be viewed as a type of non-zero-sum game where one 
attempts to make assumptions which will have a greater impact on the simplification of the analysis 
than on the accuracy of the prediction of the phenomena of interest. 

Two observations from this discussion are significant. First, the choice of the approximation 
scheme depends on the specific answers that one is looking for (i.e., the choice depends on the 
context of the problem rather then its generic type). Second, the means of analysis change in time; 
that is, computations which 20 years ago would have required the world's largest computers can now 
be accomplished faster and for a minimal cost on a personal computer. It is proper to think in terms 
of approximation schemes "appropriate for the current time." Since the evolution of a new computer 
generation appears to take only a few years, it seems natural that we will see a corresponding 
evolution in approximation schemes which will take advantage of these new resources. It is a thesis 
of this report that GN theory and, in particular, higher-level GN theory is appropriate for our time. 
Two developments lead ,to this conclusion: the emergence of low-cost, high-speed computation, and 
the emergence of sophisticated symbolic manipulation software which allows one to accurately 
perform calculus and algebraic manipulations on rather large systems of equations. 

Approximation schemes can be separated into different categories. Perturbation methods, both 
ordinary and singular, introduce some mathematical approximation to reduce the complexity of the 
model to the point where it can be solved. One advantage of these methods is that one obtains 
governing equations for the flow and from these, both specific solutions can be obtained and general- 
izations of the behavior of the flow can be made. On the other end of the spectrum, the original 
problem can be solved by purely numerical techniques. Finite difference, finite element, and panel 
methods are such schemes. These methods are comparable to physical experiments in that each 
computation yields another result corresponding to a single realization of the flow. Generalization 
about the behavior of the flow requires induction from many of these specific solutions. GN fluid 
sheet theory lies in the middle of this spectrum. It achieves simplification by reducing the 
dimensionality from three dimensions to two. This theory yields governing equations for the flow, 
which are solved numerically in a more efficient manner than those from the three-dimensional 
model. 



In perturbation analyses, reference scales appropriate for the particular problem at hand are 
introduced. These scales are used to nondimensionalize the variables and to identify a nondi- 
mensional perturbation parameter (or parameters) which can be considered small (or large). For time 
invariant problems, the flow is decomposed into a sequence of flows of presumably decreasing impor- 
tance, each of which is a correction to the sum of the previously computed flows. The assumed 
sequence is inserted into the field equations and boundary conditions and the perturbation parameters 
are used to segregate these into a corresponding sequence of perturbation problems. Typically, each 
of these problems is linear in the unknowns at its level, although it may involve higher-order terms of 
quantities determined already in previous (lower-order) solutions. 

An implicit assumption is made that this sequence is convergent, but this is almost never 
proven. In some flow problems, such as two-dimensional water waves in both shallow and deep 
water, there is ample evidence of the convergence (Schwartz 1974). In problems such as the flow 
about thin airfoils, the lack of convergence is well known. These methods, which date back to Stokes 
and other early researchers, are often called "rational methods" because the assumptions are clear and 
testable, and the details can be embodied into a mathematical process through which theoretically one 
can obtain solutions to whatever level of accuracy one chooses, if the perturbation sequence 
converges. A particular advantage of the perturbation approach is that, since perturbation parameters 
are used to size quantities, the ingredients of this parameter give one insight into the types of 
problems for which the approximation is appropriate. However, the perturbation approach does not 
yield quantitative measures of the accuracy to be expected for a particular problem. This information 
can only be obtained from an analysis of higher order problems or from comparison with 
experiments. 

Unsteady fluid problems are rather different. It is usually not feasible to consider the flow as 
a sum of linear perturbation problems that one can solve sequentially until sufficient accuracy has 
been obtained, unless some additional limiting assumption such as periodic motion is introduced. 
Generally, one must solve a single set of governing equations in time. Perturbation methods have 
also been used, for instance, by Wu (1981) for the formulation of approximations appropriate for 
time-domain wave problems. For these problems, the introduction of scales permits grouping of 
terms of like size for a particular problem. One can obtain a variety of different sets of governing 
equations depending on the order of terms retained. That is, one can obtain a sequence of sets of 
governing equations for a given problem, each of which contains all of the terms of the previous sets 
plus those due to the retention of the next order of smaller terms. Presumably, this sequence of 
increasing complexity will produce solutions of increasing accuracy. Generally, all of these sets of 
governing equations will be nonlinear with the exception perhaps of the first. However, since we are 
throwing away parts of the exact problem, we can expect that some quantities, such as mass and 
momentum, may not exactly be conserved (although, if a consistent analysis has been performed, the 
errors should be of a size comparable to the first neglected order). 

The limitations resulting from such an analysis can be subtle. Many perturbation schemes 
consider the fluid velocity to be a small perturbation to a reference velocity. The typical result is that 
any order of the perturbation theory is not Galilean invariant, since the terms which are needed to 
make it so are spread amongst several orders. One such example is the Korteweg de Vries equations 
for nonlinear, shallow-water flow. 

In problems where viscosity is not important (or can be ignored) and the flow is initially 
quiescent, the field equation becomes Laplace's equation, which is linear. For these flows much of 



the focus of perturbation analysis is therefore on the boundary conditions. Both the kinematic 
boundary condition on material surfaces, as well as the dynamic boundary condition on the free 
surface, are nonlinear. Expansions of these nonlinear conditions and grouping of terms by orders of 
the perturbation parameter(s) lead to a basis for selecting or discarding terms. For these flows, then, 
the perturbation method solves a problem where the exact field equation is satisfied, but where the 
boundary conditions are satisfied only approximately. In some sense, the uniqueness of these flow 
situations stems solely from the imposed conditions at the boundaries and it is worrisome to concen- 
trate the approximations there. 

Green-Naghdi theory is, however, quite the opposite in nature. The boundary conditions are 
met exactly, but the field equations are approximated. In this approach the dependence of the 
kinematic structure of the solutions along one coordinate direction is prescribed. This direction is the 
vertical (or x3) direction for the theories discussed in this paper. In many problems, such as shallow 
water problems, the depth of the fluid in the x3 direction may be quite small; in others the fluid 
domain can be infinite in this direction. In either case the resulting theories are called fluid sheet 
theories. The assumed variation of the tluid velocity across x3 will be expressed here as a finite sum 
of products. The first term in each product is a coefficient that depends on the remaining two 
horizontal coordinates (xl and x2) and time, and the second term is a function of x3 alone. 

The governing equations for the Green-Naghdi theories presented here are composed of: an 
exact statement of the conservation of mass, an approximate statement of the conservation of 
momentum, and exact statements for the various boundary conditions. As a result of the formulation, 
x3 no longer appears in the governing equations and all quantities therein are functions of xl, x2, and 
time. No scales are introduced and no terms are thrown out. Development of GN theory takes place 
in two steps: postulation of a set of governing equations, and verification that these equations satisfy 
certain physical requirements. The process presented below is one which is unique to this project, 
and although it closely follows research efforts in the subject area at the University of California, 
Berkeley, it is substantially different from that used by Green and Naghdi. 

The first step is a procedure for identifying a candidate fluid sheet model. In fact, there is no 
preferred method for this identification and at this point the model could just as well have been 
induced from the results of model tests. The same variational approach of Kantorovich and Krylov 
(1958) used previously by Shields and Webster (1988) is used to derive the candidate model from 
standard three-dimensional equations. This approach is a variation of the method of weighted 
residuals, and is therefore similar in nature to the procedure used in the development of finite 
elements. In this procedure, the dimensionality of the system of partial differential equations is 
reduced, rather than the system being replaced by the system of algebraic equations, as it would be in 
a Galerkin procedure. 



PART 11: FORMULATION WITH GENERAL WEIGHT FUNCTIONS 

Governing Eauations 

Let x = xi (i = 1,2,3) be a system of fixed Cartesian coordinates in Euclidian space with base 
vectors ei, where e3 is oriented vertically upward. For convenience, x3 is denoted by ( in the 
subsequent development because this dimension plays a much different role than the other two 
dimensions. In the following standard Cartesian tensor notation is used, with the summation 
convention implied for repeated indices. In many instances, however, the summation will be stated 
explicitly for clarity. Latin indices are used for quantities having three spatial components and take 
on values of 1, 2, 3; Greek indices take on the values of 1 and 2 only. A comma in the subscript 
denotes differentiation by the following variable or that corresponding to the subsequent index. 

The fluid velocity vector at a point x and time t is given by Y = v (x, t) = vi ei. The fluid is 
assumed to be bounded by two smooth and non-intersecting material surfaces. The material surfaces 
are given by ( = a(xl, x2, t) and ( = /3(x1, x2, t), /3 > a, respectively. Since a and /3 are material 
surfaces, on these surfaces the kinematic ("no leak") boundary condition is 

This discussion will be concerned only with an incompressible ideal fluid, and in this case the 
stress vector t = -p ei and the mass density of the fluid p are assumed to be constant. The body force 
is given by - pge,. (In a more general theory, t would have the form ti = 7 ij nj, where 7ij is the 
stress tensor, and the body force would be a general vector pf.) Unit outward normal vectors on the 
top and the bottom surfaces are denoted by B and ii, respectively. The three-dimensional (Euler) 
equations resulting from the conservation laws of mass and momentum are 

The fundamental kinematic assumption that the velocity field can be approximated is 
introduced as 

where 

wn(x1,x2,t )  = W: (x1,x2,t) ei 

>a(() is a "shape" function that depends upon (only. The coefficients W, are unknown time- 
dependent vectors to be determined as a part of the solution. The W, correspond with the "directors" 



in the original work (Green and Naghdi 1986 and 1987). For each choice of K a complete, closed set 
of equations is developed that is independent from those for a different value of K. Thus, the 
kinematic models form a hierarchy depending on K and increasing in complexity with K. Since this 
hierarchy is different from a perturbation expansion, the terminology adopted is that suggested later 
(Shields and Webster 1988) to describe the complexity of the theory. A particular member of this 
hierarchy is referred to as the "Kb level approximation." 

The kinematic boundary conditions in Equation 1 may be rewritten using Equation 3 as 

The continuity equation, Equation 2a, likewise becomes 

In addition to the kinematic boundary conditions, 4K scalar equations are needed. K scalar 
equations derived from conservation of mass are chosen and K vector equations derived from 
conservation of momentum (corresponding to 3K scalar equations for three-dimensional problems) to 
provide closure for the fluid sheet theory. It is convenient at this point to restrict the weighting 
functions to those that possess the following property 

where the a, are constants. The function set (k) is therefore a finite closed set under differentiation. 
Inserting Equation 6 into Equation 5, the continuity equation can be expressed as 

or, since the terms in braces are not a function of !: 

for r = 1, ..., K . 



Equation 8 is therefore an exact statement of conservation of mass for the flow given by the 
kinematic approximation, Equation 3. Note that if the derivative of the P weighting function with 
respect to 3. is not expressible in terms of the previous orders of the weighting function set, more than 
K conditions will result from this procedure and the Krylov-Kantorovich method described below 
could be used to determine approximate equations for the conservation of mass. 

There are many function sets that satisfy Equation 6 (for instance, exponential functions 
where m = n). Polynomial functions also satisfy Equation 6, like those previously used for shallow- 
water fluid sheet theory. Similarly the sets (sinh(a0, cosh(a0) and (sin(aS.), cos(a0 ), a = &, a,, ... 
, a, also satisfy Equation 6. 

If Equation 3 is substituted into momentum Equation 2b, and the resulting equation is 
required to be satisfied everywhere in the fluid domain (as for continuity), many more equations than 
the desired K vector equations would be obtained. This difficulty is due to the presence of the 
quadratic terms in Equation 2b. A weak formulation due to Kantorovich is employed where the 
"shape functions" A, are used as weighting functions to develop K approximate equations which 
express the conservation of momentum in some integral sense. Multiplying Equation 2b by each A,,({) 
and integrating through the vertical direction results in 

for n = 1, ..., K. 

Using the product rule of differentiation, and noticing that A,, is not a function o f t ,  and that y 
ranges from 1 to 2, Equation 9 can be expressed as 

which further reduces to 

It is noted that A, is only a function of S. and this means that A,, = 0. With this relation and 
recognizing that the fourth integral is an exact integral, one obtains: 

where A,,' = a~, , /a ! : .  

Similarly, the right-hand side of Equation 9 becomes (with application of Leibnitz' rule) 



Combining Equations 10 and 11 gives 

for n=O,. . .,K, where 5 and f, are the pressures on the top and bottom surfaces respectively, and P, 
and P,' are the nh integrated pressures: 

The expression for the velocity field in Equation 3 is now inserted into the left-hand side of 
Equation 12: 



where 

Thus, the equation for fluid sheets (Equation 12) for an inviscid fluid can be written as 

for n=O, ..., K. 



Equation 14 can be reduced further. Prior to this reduction, some intermediate results 
should be recorded for later use. In the continuity equation, Equation 5, the dummy index m is 
changed to r, and after multiplying this equation with X, and a, it should be summed over m 
(m=O,..,K). 

This equation is integrated through the vertical direction to yield 

After interchange of the order of summation and integration and using Equation 13a, we have 

The left-hand side of Equation 14 is now considered and the chain rule is used for 
differentiation to expand the second term: 

After use of Equation 17 to replace the third term in Equation 18, the LHS of Equation 14 becomes 

The value of [y,' + ymn] can be determined by using integration by parts: 



Inserting this identity into Equation 18 and using this to replace the left-hand side of Equation 14 
yields 

for n=O, ..., K. 

The derivation of the general Green-Naghdi equations for an inviscid, incompressible fluid 
have now been completed . The governing equations for inviscid flow are then: the two kinematic 
boundary conditions in Equation 4, the K conservation of mass equations in Equation 8, and the K 
approximate conservation of momentum (vector) equations in Equations 14 or 20. Note that the 
conservation of momentum equations are therefore 3K scalar equations for three-dimensional flows. 
The variables include 3K unknown components of W,, K integrated pressures P,, and two conditions 
on the bounding surfaces. On the top surface either 6 or fi is unknown, depending on the problem. 
Similarly, on the bottom surface either a, or 5 is unknown. Thus, we have 4K+2 unknowns and the 
same number of equations, and the system is closed. 

In some previous work and in our examples, a so-called "restricted" theory is used. In 
these theories the X functions which are used are often polynomials, in which the last term W, is 
restricted to have no components in the x1 or x2 directions. This situation will be discussed separately 
below. 

We can make several observations about the results so far. The equations depend only on 
xl, x2 and t and do not have any explicit dependence on the variable c. After, the initial assumption of 
the form of the velocity distribution in the z direction was made, no terms were thrown out. The 
governing equations, like the conservation laws from which they were derived, are Galilean invariant. 
Because no scale was introduced, there is no explicit flow situation for which this theory is most 
applicable. The governing equations derived this way are, to be sure, an approximation. However, 
the limits of this approximation are implicit and must be determined by numerical or physical 
experiment. Even for the lowest level theory, the governing equations are nonlinear because both the 
conservation of momentum laws and the boundary conditions are. These are: 



Velocitv profile: 

where 

Kinematic boundarv conditions: 

Conservation of mass: 

for r=O, ..., K 

Conservation of momentum: 

+ (P;' - pgy, - PAn(P) + Pin(.) ) r, 

for n=O, ..., K. 

Because the governing equations are approximate, they do not exactly satisfy Kelvin's 
theorem and the flow computed from these equations does not remain irrotational. Recall that 
irrotationality is not an property of an inviscid fluid, but rather a consequence of an assumption that 
the fluid is initially quiescent and is acted upon by conservative forces. Shields and Webster (1989) 



showed that the nh level shallow water fluid sheet theory did satisfy conservation of circulation in an 
average sense across the fluid domain and the flow does remain approximately irrotational in an initial 
value problem when the initial state was quiescent. However, the treatment of steady flow (time 
invariant) problems does require some additional specifications of the average circulation (or of the 
vorticity distribution). 

The appearance of the momentum equations in Equation 20 is deceptively simple but note 
that there are two levels of implied summation from index repetition. Actual evaluation of the 
equations is sufficiently tedious that it is impractical to carry out any but the first one or two levels 
without the use of computer programs to perform the calculus and the algebra. 

Discussion 

The result of the derivation above has been to reduce the dimensionality of the 
three-dimensional equations to a set of two dimensional equations in xl, x2, and t. As such, these 
equations are reminiscent of equations for a membrane although, unlike a membrane, this "fluid 
sheet" has a much greater kinematic complexity. For instance, a membrane has only one kinematic 
variable, the location of the membrane for a given x1 and x2. The fluid sheet has vectors W,,, one of 
which may be identified as the "location" of the sheet, but the others of which are clearly kinematical 
ingredients that have no counterpart as a membrane. 

Using a development that is an analog of the development of the three-dimensional 
equations (for instance, the Navier-Stokes equations), Green and Naghdi developed a continuum 
model of two-dimensional sheets with kinematic complexity. This development specifies the general 
form to be expected with arbitrary complexity. In this development, the kinematic ingredients are 
called "directors" and the sheet is a "directed fluid sheet" or "Cosserat" surface. 

In their treatment, Green and Naghdi regard a set of governing equations, such as those 
developed in the previous section as a postulated set of equations motivated by the three dimensional 
equations. The equations are to be validated by comparison with the general theory or, if required, 
modified to reflect the physical principals embodied in the general fluid sheet model. It is fortunate 
that an ideal, incompressible fluid has such a simple constitutive relation (its internal stresses are only 
pressures and these do not depend on the rate of strain of the fluid) that the variational procedure 
above does yield a set of governing equations that fits the mold provided by the GN fluid sheet 
model. 

One of the distinct advantages of fluid sheet theory is that it always results in approximate 
governing equations for unsteady, three-dimensional flows. The specialization of these equations to 
either two dimensions or to steady flows presents no difficulty. However, many of the specialized 
numerical techniques used in fluid mechanics are developed with appeal to specialized methods which 
depend on the flow being steady or two-dimensional (or both), and are therefore limited in their 
applications. 

Finite Depth A p ~ l i a t i o n s  

In this section, a special case of the theory for shallow water is provided. In this case 
further reduction of the equations is possible due to the choice polynomial weighting functions. The 
equations for shdlow-water are previously given by Green, Laws and Naghdi (1974) and Green and 



Naghdi (1984, 1986 and 1987) and Shields and Webster (1988). In this chapter these equations are 
re-derived based on the general derivation above. The present work yields equations that are identical 
to those given by Green and Naghdi (1984 and 1986); that is, these equations can algebraically be 
transformed into those of Green and Naghdi. In this research, constraints of the restricted theory that 
existed in the earlier work of Shields and Webster have been removed, and a generalized set of 
equations for an arbitrary level of the Green and Naghdi theory is presented. The complete set of 
equations for the first two level theories for shallow-water applications will next be presented. 

Equations for Shallow Water 

With the choice of the polynomial weighting functions, )a(D = r, it is possible to reduce 
the general equations further. In this case the various y,, y,,, etc. can be expressed using a single 
function: 

With the use of Equation 21, one obtains 

The velocity field is given by 

With the use of Equation 23, the equations for the kinematic boundary conditions and the conditions 
of the conservation of mass and momentum may be obtained. The kinematic boundary conditions are 
given by 

The continuity equation becomes 



Separating the Kh term in the first summation and changing the index n to ni- 1 results in 

If Equation 27 is to hold everywhere, each coefficient of must be set to zero as: 

WK,, = O 

wn,, + (n+l)W3n+l = 0 for n=O,l, ..., K- 1 

Finally, the conditions of the conservation of momentum become 

for n=O, ..., K. 

Equations 23 through 30 are equivalent to those previously given by Green and Naghdi 
(1984) and Shields and Webster (1988). It is noted that Equation 28 is the equation that is related to 
the so-called "restricted theory." The details of the discussion about the restricted theory will be 
given in the following sections. 



PART 111: IRROTATIONAL FLOW AND THE RESTRICTED THEORY 

Discussion 

When Green and Naghdi introduced their theory, they restricted the last component of the 
director so that it remains vertical at all times. In the theory of Green and Naghdi, specific 
constitutive equations are required for the 3-D response functions; that is, the terms on the right-hand 
side of Equation 20, which for a more general fluid can be considerably more complicated. These 
constitutive equations represent the material properties of the fluid and its particular geometry. Also 
the inertia coefficients y, and the relationship of the velocity fields v to the director velocities W,,, 
need to be specified. Green and Naghdi chose the response functions so that the pressure is the only 
component that determines the mechanical power. The constraint responses are found such that the 
corresponding mechanical power is zero. They also assign force vectors to obtain proper responses. 
The above procedure is central to Green and Naghdi's approach and is what makes their theory self- 
consistent in its internal structure. Notably in the theory of plates and shells, their theory shows its 
self-consistency in its ability to satisfy both dynamic boundary conditions and kinematic boundary 
conditions. Many competing approaches used to form the three-dimensional equations ended up 
having inconsistencies, and more specifically, both boundary conditions were not satisfied at the same 
time. If one starts with the right kinematic conditions, one ended up with the wrong dynamic 
conditions, and vice versa. The approach of Green and Naghdi can model a general fluid by 
specifying its constitutive equation without any conflict. 

Shields (1986) set W,' = 0 (corresponding to a restricted director) in order to satisfy the 
continuity equation. This was necessary in order to obtain K+ 1 conditions from the continuity 
equation because of the transformation that had been introduced. Still, no clear meaning of the 
constraint is offered. It appears to exclude the solution which may be possible otherwise. 

The condition with no constraint is investigated in this research. Originally the restricted 
theory meant the first level of the direct theory with a constrained director. This concept is now 
extended to the K' leve1,theory. It is called a-restricted theory if the K"' components of the 
two-dimensional velocity components are constrained (corresponds to constraint of the K' component 
of the directors). In this work it will be shown that this constraint has a simple meaning. 

For a twodimensional flow (Equation 28 in the previous section), the most general solution 
of Equation 28 becomes 

w', = constant 

Consider now two-dimensional, steady periodic waves. In determining the wave celerity of 
steady periodic waves an additional assumption is needed in order to ensure that solutions are unique. 
Traditionally this is accomplished by either of two definitions of irrotational wave speed introduced by 
Stokes. Cokelet (1977) defined the circulation per unit length, C, by 



where X is a wave length and u is a horizontal component of the velocity. In the work of Cokelet 
(1977), Equation 32 is satisfied by the choice of reference frame which travels with the wave speed c. 
Because the flow is assumed irrotational, Equation 32 holds at every vertical location in the fluid. 
According to Stokes' theorem, the vertical gradient of the averaged horizontal velocity is zero if the 
flow is irrotational. The wave speed defined by Cokelet is then that according to Stokes' first 
definition. It is noted that Stokes' first definition is based on the prior assumption of an irrotational 
flow. 

Stokes' first definition has been used by most researchers. However, in the direct theory no 
assumption of an irrotational flow is made a priori. In the direct theory it is more natural to adopt 
Stokes' second definition of the wave speed. However, to be consistent with previous work, Stokes' 
first definition is used here, and accordingly additional irrotational requirements are needed. They 
can be treated analogously in the direct theory. Equation 32 will be used for the condition of 
irrotationality. We recall that each weighting function represents different vertical dependence. Since 
there is no vertical gradient of the averaged horizontal velocity for an irrotational flow, we may 
obtain K+ 1 conditions for the requirements of an irrotational flow if Equation 32 is to be satisfied at 
any vertical location. These are: 

for j=1,2, ...& 

where X is a wave length and c is the speed of a moving frame which is the same as the wave speed. 
Equation 33 is the definition of the wave celerity and is analogous to the first definition of Stokes. 
Equation 34 is an expression for global irrotational requirements, and may be used for the measure of 
the vorticity. If Equation 34 is not met, then the solution is not an irrotational solution in these 
integral senses. If Equation 34 is satisfied, then Equation 33, the definition of the wave speed, is 
independent of vertical location within the fluid field and is therefore equivalent to the first definition 
of Stokes. 

We now go back to Equation 31. In order to satisfy Equation 34, it is necessary that WK1 = 
0. Consider for example, two-dimensional solitary waves. Since W,' vanishes far upstream and 
downstream, W,' becomes identically zero in this case. Recall that WK1 = 0 corresponds to the 
statement of the restricted theory. From this it becomes clear that the restriction is an implicit 
assumption of an irrotational flow. This is considered as a necessary condition for the irrotational 
flow although it is not a sufficient condition. Shields stated that Theory I does not admit shear flow 
solutions. This is not true in general, but it is true if one uses the restricted theory. It is possible to 
model waves with shear flow (or current) with Theory I which is unrestricted. Higher level theories 
are capable of modeling shear flow solution with the restricted theory. 



It becomes clear that the restricted theory is needed in order to model shallow-water problems 
whose fluid field is considered as irrotational. In modeling rotational flow, either a higher level 
theory or the unrestricted first level theory may be used depending on the accuracy of the solution 
desired and other conditions, if necessary. From now on, the restricted theory will be used in 
shallow-water problems unless otherwise stated. 

Two-Dimensional Unsteady Flow - Theory I (General Formulation) 

In this section two-dimensional equations for a free surface flow over an even bottom are 
provided. This section presents a basic overview of the treatment of these equations. The notation 
will be changed from tensor notation to a component notation in which x = x1 is the flow direction. 
But usage of { is retained to represent the vertical direction together with z for convenience. The 
coordinate system is taken so that the bottom is expressed by c~(x,t) = 0 with 6, the unknown 
pressure on the bottom. The upper surface P(x,t) is a free-surface. On this surface, 0 needs to be 
specified. With K= 1 ,  Theory I equations for this specific case will next be presented. 

In Theory I the velocity profile is given by 

where u is the horizontal velocity component and w is the vertical velocity component. The 
kinematic boundary conditions are 

The continuity equation yields the following conditions: 

u, = 0 

Equation 39 means that the restricted theory is used. The conditions of the conservation of 
momentum yield the following equations: 



p x  pox = @ - - -  

P P 

Equations 41 and 42 are statements of conservation of the horizontal component of the momentum 
equations for n=O and 1, respectively, and Equations 43 and 44 are similar statements of the vertical 
component of the momentum equation. 

Because there are many unknown variables in this theory, it is convenient for computational 
purposes to reduce the system of equations to one with fewer unknowns and equations. The reduction 
is usually done by expressing all of the vertical components of the velocity in terms of the horizontal 
components of the velocity through the continuity equation and the kinematic boundary conditions. It 
is noted that this can be done for any level of the theory. Moreover, some terms are decoupled from 
other variables. For instance P, (P, in the K' level theory) is decoupled and occurs in only one 
place, Equation 42. Since there is no particular interest in this unknown, it may be possible to 
discard this variable. The parameter p occurs only in Equation 43, and therefore, this equation is 
used to express p and can be removed. If one wishes, it is always possible to compute 5 from the 
solutions obtained. Also Po (Po, P,, ..., P,, for the K& level theory) may be eliminated. As a result, 
the original set of eight equations may be reduced to a system with two equations subject to the 
variables f l  and u,. For the second level theory it is possible to reduce the system to three equations 
with three unknowns. For steady flow problems one of the components of the horizontal velocity 
may be further reduced. 

The number of unknowns is now reduced. As was mentioned above, the vertical components 
of velocity can be expressed in terms of the horizontal components of the velocity to give 

w o = o ,  W1 = - Uox (45) 

From Equations 43 and 45, an expression for pressure on the bottom surface is obtained as 



It is noted that PI  occurs only in Equation 42. Since there is no interest in PI, Equation 42 will be 
omitted here. A reduced set of differential equations with three unknowns may thus be obtained. 
These three equations are: 

P *  pox 
p U o t  + u o u o x  = p -  - - 

P P P  

Po may be eliminated using Equations 48 and 49 to yield the following two equations with two 
unknowns, p and u,,: 

B, = - ru0 PI, 

Two-Dimensional Steadv Flow - Theorv I (General Formulation) 

In this section, equations for steady flow will be obtained by setting every time derivative 
equal to zero. Since there are three governing equations, Equations 47 through 49, and three 
unknowns @, h, and PI), these three equations will be used here. The pressure on the upper surface 
is assumed 

where 



The variable T represents the constant surface tension on the surface and pa is the atmospheric 
pressure. Since the fluid is assumed incompressible, pa = 0 without loss of generality for 
convenience. 

Among these three equations, two can be integrated. Equation 50 can be integrated with 
respect to x to yield 

u O P = Q  

where Q is a constant of integration. A meaning of this constant can be easily interpreted. 

The mass flux per unit span is expressed as 

Therefore Q represents the mass flux per unit span. 

Integration of Equations 48 and 49 yields 

The pressure on the bottom is determined by 

Equation 55 may be integrated with respect to x as 

S is a constant of integration, and the meaning of this constant can be found. The momentum flux 
per unit span S* is given by 



The relation between S and S* is now obvious; S may be interpreted as the momentum flux per unit 
span less the momentum defect due to the effect of surface tension. 

With the use of Equations 54 and 58, a single governing equation inclusive of 0 may be 
obtained from Equation 56: 

Equation 60 may be integrated once more after multiplying by P,lP2. After integrating, multiply by 
P2 to obtain 

where R is another constant of integration. Solutions to these equations for different values of Q, R, 
and S correspond to regular waves and solitary waves. Such waves have been computed by various 
researchers using these equations (for instance, see Ertekin 1984). 

Two-Dimensional Unsteady Flow - Theory I1 (Flat Bottom) 

In this section, the Theory I1 equations are given. Since most of the procedures are explained 
in the previous section, the equations are simply listed. 

Velocity profiles: 

U = Uo + U 1  c + U2 c2 

Kinematic boundary conditions: 

wo = 0 



Continuity equation: 

(restricted theory) 

Conservation of momentum: 

n=0,  x-component : 

1 2  1  fi pox + - p U l  w ,  + - p 3 u 1  w2 = Pip - - 
2 3 P 

n = 1, x-component : 

n = 2, x-component : 



There are a total of 11 equations to solve, Equations 64 to 74. The system of equations is 
reduced as follows. The variables w,, w,, and w, are eliminated using Equations 66-68. The 
expressions of the vertical components of the velocity are given by 

With Equation 75, five governing equations for 0, 4, u,, Po, and P, are written here: 



P x  pox = P ^ - - -  
P P 

It is noted that Po and P, may be eliminated. The result is the following set of three equations 
in u,,, u,, and j3, and assuming in this case that the surface tension is zero and thus 0 is zero: 



Two-Dimensional Steadv Flow - Theorv I1 (Flat Bottom) 

In this section, the second level of the theory for two-dimensional steady flow with surface 
tension is provided. For this case, surface tension is allowed and the pressure on the upper surface is 
described in Equations 51 and 52. All of the time derivatives in the governing equations, Equations 
76 -80 are taken to be zero. 

Equation 76 may be integrated to yield 



As before, Q may be interpreted as the mass flux per unit span. One additional term is 
included in Equation 84 compared with Equation 53. This shows the difference between the second 
level theory and the first level theory. The x-component of the momentum equation, Equation 77 can 
be integrated with the use of Equation 84 to yield 

Again, S may be interpreted as the momentum flux per unit span less the momentum defect due to the 
effect of surface tension. 

From Equation 72, p may be determined if other variables are known. As there is no interest 
in the variable P, in this research, the corresponding equation is omitted. Then it is possible to 
eliminate u, and Po using Equations 81 and 82 to obtain three equations in three unknowns, 6,  u,, and 
P,. These are: 

Further, P, may be eliminated between Equations 87 and 88, but for these steady flow equations there 
is no particular advantage in doing so. Shields and Webster (1988) present solutions to these 
equations for both solitary waves and for large-amplitude regular waves; their results were very 
satisfactory. 



Two-Dimensional Unstmdv Flow - Theory 11 funeven Bottom) 

The governing equations for the situation of an unsteady flow over an uneven bed are 
extremely difficult to derive or present. As above, the equations can be reduced to three equations in 
Q,, u,, and 6. The governing equations were obtained using an algebraic manipulation program, 
MathematicaTM. Since these equations will form the foundation for the research performed herein, a 
presentation of them in usual mathematical form is made below. These equations have a new 
(time-independent) variable, a, the vertical coordinate of the bottom. The solution involves 
derivatives of a and it is assumed that these derivatives through the third derivative in x are bounded. 
The set of applicable equations so obtained for an uneven seabed are listed next for completeness. 
These equations, excluding the surface tension effects, establish the basis of the numerical code in the 
implementation of mathematical theory. 

Uneven bottom governing Equation 1: 

a P - 2 = auo a~ a 
at 

- 2(a - P)- - 2-(uo + a u,) + 2-(u, + p u,) 
ax ax ax 

- (a  - p) (or  + p)- ax 

Uneven bottom governing Equation 2: 





Uneven Bottom Governing Equation 3: 



aa 
+ 60-(a  - p) (a  + p) u, (u, + au,)  

ax 





PART IV: SOLUTION ALGORITHM 

Integration of evolution equations, such as Equations 81 - 83 is now considered. These 
equations are very complex from an algebraic standpoint, but in fact may be integrated with little 
difficulty. Together they form a system of three coupled, partial differential equations that are 
first-order in time and third-order in space. Further, they generally have boundary conditions at both 
ends of the domain (two-point boundary conditions). The key to an efficient scheme for their solution 
lies in the fact that the highest-order mixed derivatives are only first order in time and second-order 
in space. The scheme presented below has been developed to handle similar problems and has been 
used extensively to integrate evolution equations for deep-water waves (Webster and Kim 1990). 
There is no specific limit to three governing equations; in fact, any number is allowable, so long as 
there are sufficient boundary conditions. 

Ertekin (1984) devised a scheme for solving similar equations and boundary conditions 
corresponding to Theory I. His analysis was simplified since there were only two governing 
equations, and these were not coupled in the time derivatives of the variables. The equations are 
identical to Equation 50. The first equation could be integrated directly. The second equation, 
implicit in the spatial coordinate, was expressed as a tri-diagonal system of linear equations and 
solved using the Thomas algorithm. 

The Theory I1 equations, Equations 81 - (83, are considerably more complex than those of 
Theory I. Moreover, the last two equations, Equations 82 and 83, have the disadvantage of being 
coupled in the time derivatives of the variables. However, it is still possible to use essentially the 
same efficient scheme for their solution. The current procedure results from a hybridization of 
Ertekin's method and the scheme devised by Newman (1968) for coupled ordinary differential 
equations. 

In the interest of future work with the theory, this algorithm will herein be described in 
general terms. In particular, consideration will not be limited to the three equations at hand, but 
instead a more general system of equations will be considered which would be applicable to a higher 
order approximation of the theory. 

A system of K coupled, quasi-linear partial differential equations will be considered in the K- 
dependent variables. The variables are expressed as a Kdimensioned vector, [(x, t), and the 
equations have the special form: 

where A, B, and C are K x K matrices, g is a K-dimensioned vector. A, B, C ,  and g are perhaps 
functions of x and 4 and its spatial derivatives, although this dependence will not be shown in the 
interest of simplicity. The dot over 4 signifies a derivative with respect to time. It is assumed that 
the problem is posed as a two-point boundary-value problem in x and an initial-value problem in t. 

The domain of x over which a solution to the equations is desired is assumed to be a uniform 
grid of x's spaced a distance Ax apart. The i-th point on the grid will be denoted by x; = i Ax, i = 
1,ns. Time is also assumed to be discretized with intervals At, with tj = j At. The value of the 



solution vector t(xi,tj) will be denoted by t('J), and similar superscripts will be used for the other 
vectors and matrices. The spatial derivatives will be approximated by central differences 

With these approximations, Equation 92 can be written as 

-(a (i-ln + #id ~ U J )  
A E + ficid t(i+lJ) = g'Yl 

where 

Suppose that the solution = &,'O' is known as the result of a boundary condition at this 
point. Then the solution at i = 1 can be readily found from Equation 93 as 

where 

This process is continued throughout the domain. That is, 

36 



At the boundary i = ns it is assumed that &("+'J) is known and given as a boundary condition at this 
point. Then 

With the value of &(Mi) thus determined, the other values of &('") can be determined by back 
substitution 

e(i-lh . (i-lj) + $-l& e(ij) 
= T o  (100) 

The values of f ( ' j )  are then used to estimate the values of f ( ' J + ' )  (i.e. at the next time step) by 

~ ( i ~ + l )  =  pi^) + e(i~l A~ (101) 

This estimate is only first-order accurate and would be unsatisfactory. However, we can obtain an 
estimate for &('Jf ') by using these new values and reapplying the procedure at t = (i + 1) At. A new 
estimate for &(iJ+') can be formed by 

This new estimate is now second-order accurate in both At and Ax. 



PART V: NUMERICAL IMPLEMENTATION 

A separate report in this series will present a detailed description of the Fortran program 
based on the shallow-water Level I1 Green-Naghdi theory developed herein. This program was 
developed primarily for the use of Corps of Engineers projects associated with military and Civil 
Works and is far superior in performance and in programming style to the programs used by Shields 
(1986) and Shields and Webster (1988) for the previous shallow-water work. The program was 
specifically written to be generally applicable to two-dimensional solutions of all sorts of GN theory 
water wave problems. 

The flow chart included herein (Figure 1) describes the general modular structure of this 
numerical model. The part of the program which is unique to the particular level of the theory (and 
type of GN theory for deep- or shallow-water) is the subroutine called coeff(i,neq). The coeff 
subroutine in the program corresponds to Equations 89 - 91 of this report (Level I1 shallow-water 
evolution equations); this subroutine is complicated and critical. The program was checked for 
accuracy, and preliminary computations using it have been performed. 

The program consists of a main routine which provides for the input, output and the flow of 
the information. The principal subroutines are solve(neq), a coding of the Thomas algorithm 
presented above, coeff(i,neq) which includes the GN equations, invmat(a,b,neq,n), a standard linear 
equation inversion routine using Gauss-Jordan elimination, and filter, a digital smoothing filter to 
remove the spurious ripples near the wavemaker. A routine bottom determines the various spatial 
derivatives of the bottom topography required in the theory. Several small routines to perform 
standard vector and matrix operations are included to make the program self-sufficient. 

For the shallow-water wave study, it is assumed that the time history of the waves is known 
at the left-hand boundary of the domain. The waves are input not only as a local wave height history, 
P(t) but also as a history of the corresponding values of the other variables in this Level I1 theory 
[u,,(t) and u,(t)]. These variables are obtained from the solution to the steady flow equations 
(linearized for small wave amplitude) and only roughly represent the flow which corresponds to steep 
waves. These linear solutions are (for waves proceeding from left to right with a celerity c): 

P(t) = pocos[kx - a t ]  = ~ , c o s [ ~ ( x  - ct)] 

and where 0, is the wave amplitude and h is the water depth. In that these linear, small-amplitude 
waves are not exact boundary conditions for finite amplitude waves, there are some small oscillations 
near the wave maker as the solution "finds itself." This is similar to the flow near a flap-type wave 



maker in a physical wave tank, since the boundary condition at the flap is only roughly like a free 
water wave. These numerical ripples cause problems if allowed to propagate and are thus filtered out 
near the wave maker. Free waves elsewhere are not filtered. The historical wavemaker input values 
are placed sequentially in the first three elements of the variable arrays, so that spatial derivatives can 
be formed. An Orlansky free boundary condition is placed at the other end of the domain. 

The equations are integrated and the results are dumped into several files as they become 
available. Appropriate output for use at CERC may be tailored to the desired user needs in a given 
application. An important feature of this program is that it has re-start capability and the program is 
arranged to be able to continue using previous computations. This feature will be particularly good if 
one is using a microcomputer. 



PART M: CONCLUDING REMARKS 

This report details the development and some of the philosophy behind the Green-Naghdi 
theory of fluid sheets. The fundamental principals of the Level I and Level I1 Green-Naghdi theories 
are described for completeness. Derivation of both the Level I and Level I1 theories have been 
presented in a systematic manner due to complexities of these theories and high level of mathematics. 
The powerful symbolic manipulator MathematicaTM was used for the formulation and derivation of 
equations. A modular Fortran program has been developed for shallow-water Level I and I1 theories. 
The 2-D numerical model developed in this research is applicable to solutions of all Green-Naghdi 
theory water wave problems. The program allows a general description of the bottom contours and 
of boundary conditions at the right-hand side of the domain (either open or reflective). 

It is recommended that the Level I11 Green-Naghdi theory be developed in the next phase of this 
research for coastal applications. The Level I and I1 theories presented herein can be easily extended 
to 3-D flows, although the equations will be considerably more complex. The 3-D Green-Naghdi 
equations may for all practical purposes be beyond human capabilities, but these are easily 
manageable with the use of mathematical and symbolic manipulators such as MathematicaTM. 

A 3-D Green-Naghdi theory will be better suited for military applications, including the Logistics- 
Over-The-Shore operations and coastal wave problems, since it can precisely describe effects of 
amplitude nonlinearities, frequency dispersion, refraction, shoaling, reflection, and diffraction of 
waves propagating over arbitrary water depths, seabed topography, and non-uniform boundaries. The 
problems of wave breaking and re-formation may realistically be represented only by a 3-D time- 
dependent Green-Naghdi theory. The solution algorithm for 3-D dimensional flows will have to be 
redeveloped to accommodate the new domain and several design problems in coastal applications, 
both for military and civil works. 
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