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13. ABSTRACT (Maximum 200 words) 

Knowledge of total water levels, of which the heights of wind waves are 
an important part, is critical to the successful design of coastal shore 
protection projects. In this report, a preliminary examination is made of the 
behavior of two wave height distribution models using a small but diverse set 
of test data. Data are derived from a Waverider buoy deployed near the 8-m- 
depth contour about 1 km offshore the Coastal Engineering Research Center's 
Field Research Facility near Duck, NC. Data are classified by directional 
characteristics derived from a high-resolution, linear array, directional wave 
gage also located near the 8-m contour and just north of the Waverider buoy. 

The two models are the Rayleigh probability function and the Beta- 
Rayleigh probability function, introduced to address the problem of wave 
heights in shallow water. The Beta-Rayleigh model was used in three forms: 
a deepwater asymptotic form, the formally derived form, and a finite-depth form 
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13. (Concluded). 

in which the governing parameters are estimated from the spectrally based 
characteristic wave height and peak period. Models were tested under the 
constraints that they be computed exactly as published and with no allowance 
to adjust parameters to reduce differences with observations. 

In comparisons of overall wave height distributions, average wave height 
and averages of the highest one-third, one-tenth, one-twentieth, and one- 
hundredth waves, the deepwater Beta-Rayleigh model performed best but just 
slightly better than the formal, shallow-water form. The Rayleigh model was 
found to overpredict slightly the wave heights on the high-wave tail of the 
distribution, as has been observed before. The estimated Beta-Rayleigh model 
performed worst, primarily due to a high sensitivity of the formulation to 
differences of order 10 percent in estimated parameters. All models were 
comparable in estimating maximum wave height, given the sampling uncertainty 
of measured maximum wave height from a single record. No particular sensiti- 
vity of measured wave height distributions to sea state directional character 
was. detected; the primary influence seemed to be overall energy level and the 
character of frequency distributions of energy. 

In spite of the stringent requirements of the tests, all models per- 
formed remarkably well. Some recommendations for additional research include: 
effects of filtering a time series on estimates of observed wave heights, 
effects of different breaking wave height models on behavior of the Beta- 
Rayleigh model, and the need to improve formulae relating frequency domain 
parameters to wave height distribution parameters. 
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USE OF THEORETICAL WAVE HEIGHT DISTRIBUTIONS 

IN DIRECTIONAL SEAS 

PART I: INTRODUCTION 

1. Knowledge of water levels, especially the extreme water levels that 

occur during high energy events (such as storms and hurricanes), is critical 

to the successful design of coastal shore protection projects. Nearshore, 

oceanic water levels can vary because of processes such as tides, storm 

surges, and ocean surface waves in the so-called wind-wave frequency band 

(roughly 0.04 to 0.35 Hz). Wind waves do significant amounts of work on the 

coastal boundary. Water levels resulting from large wind waves contribute to 

the extremes of beach and structural runup and to the potential for overtop- 

ping and subsequent flooding behind coastal defenses. 

2. A reasonably successful method of describing water levels in a way 

that coordinates well with coastal engineering design is statistical. That 

is, a probability is assigned to water levels induced by wind waves in a given 

sea state (which is itself a statistical description of the coastal environ- 

ment over times long compared with typical wind-wave periods but short 

compared with tidal periods and storm durations). From a collection of these 

(derived either empirically from historic data or in conjunction with a well- 

designed mathematical model), a probability of extreme water levels expected 

over the life of a structure can be computed. The structure can then be 

designed to tolerate these extreme conditions and, logically, all lesser 

conditions. 

3. Clearly, an important facet in this procedure is the definition used 

for the probability of wave-induced water levels. A frequently used function 

is the wave height distribution. In the form of a probability density 

function (pdf") , this gives the probability that a randomly chosen wave height 

will fall within a small range about a specified wave height. Here, a wave 

height is defined as the vertical separation of a wave crest and its following 

" For convenience, symbols and abbreviations are listed in the Notation 
(Appendix E). 



trough as observed at a fixed horizontal location*. Once a pdf is specified, 

the rules of statistical theory allow many important properties of a wave 

field (in a particular sea state) to be estimated. These include mean wave 

height, root-mean-square (RMS) wave height, average height of a certain 

fraction of the highest waves, and the expected largest wave height. 

4. The most efficient way to specify a wave height distribution is with 

a mathematical model of the appropriate pdf. Models can be used to relate 

conditions from different coastal sites (by classifying large numbers of 

observations or sea states with a few parameters), can usually be readily 

exercised to make a particular computation (as compared with searching through 

large numbers of observations), and can be incorporated in broader models 

(which include effects of storms and tides) that describe waves in a probabi- 

listic way. The search is then to find a mathematical model of wave height 

distributions sufficiently accurate for consideration in coastal structural 

design. 

5. One of the earliest and most widely used models is the Rayleigh pdf, 

introduced by Longuet-Higgins (1952). It was derived based on the assumptions 

that the sea surface is composed of a large number of linear wave components 

arising from a narrow band of frequencies. It is attractive because it is 

derived rationally and has only one parameter, the RMS wave height. Once this 

parameter is set, all other properties of the wave height distribution are 

fixed. A comparison of this model with a large set of observations is 

described in the Shore Protection Manual (SPM) (1984). Unfortunately, that 

tome recommends modifying both the number of waves and the RMS wave height 

from a wave record in order to minimize differences between the model and 

data. The SPM (1984) indicates that once these adjustments are made, the 

model still differs from the observations by 10 to 15 percent in the low- 

probability but high-wave-height tail of the distribution that is important 

for estimating extreme conditions. This result suggests that the data, the 

model, or both are not representative of real ocean conditions to within the 

above-indicated percentage. 

6. In defense of the Rayleigh distribution, Longuet-Higgins (1980) 

cites favorable comparisons of that distribution with data presented by Earle 

(1975). He goes on to indicate how the model agrees quite favorably with data 

* Determined from a time series record by up-crossing analysis. 



presented by Forristall (1978) when some effects of finite wave heights are 

taken into consideration. The crux of that discussion was that Forristall's 

data were normalized by the zeroth moment of the sea-surface spectrum and not 

the RMS wave height. In linear wave theory, there is a theoretical relation- 

ship between the two. This relationship is changed slightly under the 

nonlinear conditions considered by Longuet-Higgins (1980). 

7. This variation suggests an important consideration in the applica- 

tion of a theoretical wave height distribution to data that may have been 

processed so as to determine one set of parameters, but not the RMS wave 

height (or any other parameter), which would be used directly in a wave height 

distribution model. Such a situation could occur with a wave gage that had 

internal data processing capability and computed and stored only the smoothed 

wave frequency spectrum but not the RMS wave height (a time domain parameter). 

The adequacy of a model is subject then to two tests: first is the adequacy 

of the basic model when primary model parameters are used and second is the 

adequacy of relationships between primary and measured parameters. 

8. The finite wave heights addressed by Longuet-Higgins (1980) could 

arise during the shoaling of low-amplitude, deepwater waves approaching a 

coast. Because waves tend to steepen on shoaling, such waves would tend to 

evolve larger amplitudes relative to their wavelengths than in deep water and 

thereby be more subject to nonlinear effects. A further consequence of 

shoaling is the eventual breaking of waves in shallow water. This is an 

important phenomenon for two reasons. First, it changes the wave height 

distribution because the largest waves break and so are eliminated from the 

distribution. Second, the region in which this occurs is also the region most 

frequently involved in coastal engineering activity. It is therefore most 

important to have an accurate wave height distribution model that is valid in 

shallow water. 

9. The arguments presented by Longuet-Higgins (1980) indicated that the 

Rayleigh distribution is valid under mildly nonlinear conditions when the RMS 

wave height is used as the controlling parameter. Thornton and Guza (1983) 

extended the hypothesis to include highly nonlinear, actively breaking wave 

conditions in very shallow water. They tested this hypothesis using data from 

a number of sensors in water depths as shallow as 1 m in the breaker zone at 

Torrey Pines Beach, California. They found the model to yield very good 

estimates of wave height statistics, albeit with a very slight overprediction 



of the wave population in the high-wave tail. This is somewhat like the 

result given in the SPM (1984), although under a much broader range of 

dynamics. 

10. These results suggest that the Rayleigh pdf is a very good es- 

timator of the properties of wave height distributions under a very broad 

variety of nearshore conditions. There are two potential problems with this 

model, however. One is its tendency to have different values on the high-wave 

tail than have been observed in at least two experiments. As mentioned, this 

tendency can be important in the estimation of extreme statistics. The second 

problem is related to this in that the Rayleigh model is a continuous func- 

tion; i.e., there is a very small but finite probability of a wave of gigantic 

height in water of any depth. This hypothetical situation is not physically 

meaningful in shallow water where waves are known to break. Again, this is a 

property of the tail of the distribution that can affect estimates of extreme 

statistics. 

11. A number of proposed models take into account a limiting height for 

waves in shallow water. Thornton and Guza (1983) review four models which, in 

varying degrees of complexity, simply truncate the basic Rayleigh pdf above 

some wave height identified as the breaking wave height. These models are by 

Collins (1970), Battjes (1972), Kuo and Kuo (1974), and Goda (1975). Although 

these models have the proper intent of including the effect of a limiting wave 

height, they do so at the expense of the shape of the high-wave tail, which is 

discontinuous (i.e., not smooth) in all cases. This property must have an 

adverse effect on estimates of extreme statistics. 

12. In a somewhat more elegant approach to this problem, Hughes and 

Borgman (1987) have described a model derived more nearly from first prin- 

ciples. That is, they assumed that the wave field is composed of a large 

number of linear wave components from a relatively narrow range of frequencies 

(just as in the derivation of the Rayleigh distribution), subject to the 

constraints that the envelope of wave extrema not exceed a limiting value and 

that the resulting pdf is analytic within its constraining limits. They named 

the resulting function the Beta-Rayleigh pdf because the leading coefficient 

contains a Beta function (see Abramowitz and Stegun 1970) and because the 

function degenerates to a Rayleigh pdf under certain conditions. The mathe- 

matical description of this model is presented in Part 11. 



13. Hughes and Borgman (1987) tested this model against a somewhat 

limited data set involving photographically recorded wave staffs placed in 

depths as shallow as 0.5 m at Duck, NC, site of the Field Research Facility 

(FRF) of the US Army Engineer Waterways Experiment Station, Coastal Engineer- 

ing Research Center (CERC). They found good agreement of the model with these 

data. However, the data sets were somewhat limited, containing only 60 to 

70 waves per observation, so the statistical verity of their test is somewhat 

suspect. To augment their tests, additional tests have been performed using 

longer term data from another instrument at the FRF. The data used in these 

tests are described in Part 111, and test results are presented in Part IV of 

this report. 

14. As will be seen in Part 11, the Beta-Rayleigh pdf has a fundamental 

form that degenerates to a simpler form in the case of deep water and degener- 

ates further to a Rayleigh pdf if the wave distribution parameters have a 

certain relationship to each other. In an auxiliary model, Hughes and Borgman 

(1987) describe the governing wave height distribution parameters (time domain 

properties) in terms of spectral parameters (frequency domain properties) so 

that the model can be applied if only spectral parameters are known. Spectral 

parameters are often the output of numerical wave transformation models (and 

so relates to the question of using secondary parameters to replace primary 

parameters, as discussed previously). Hence, there are four different forms 

of the model that can be tested. Because one of the forms is the Rayleigh 

pdf, it is also tested in the process. 

15. As part of any model test, the conditions should be sufficiently 

varied that model strengths or flaws become apparent. In the tests reported 

here, advantage was taken of the high-resolution directional wave climatology 

that exists at the FRF (Long and Oltman-Shay, in preparation) to isolate a 

small but diverse set of conditions which include small and large directional 

spread, unimodal and bimodal energy distributions, a range of frequency 

spreads, and a range of total energy levels before, during, and after a storm. 

16. The test consists of comparing observed wave height distributions 

with each of the four model forms. Because this is a test of the applicabil- 

ity of these models, the test is constrained to use the models exactly as 

published and to use observed parameters as they are found. That is (SPM 

procedure notwithstanding), there is to be no fitting of model parameters to 
improve the comparisons. The intent here is to determine where, if at all, 



there may be problems with any of these models in straight application. It 

should be noted that the number of test cases is small; the results given here 

should not be considered comprehensive but rather indicative of model viabil- 

ity. 



PART 11: MODEL DEFINITIONS 

Basic Statistical Relationships 

17. The models to be tested are all defined as probability density 

functions which will be denoted by the symbol p(H) in general and where 

subscripts after the p will distinguish the different models. The variable 

H is a specified wave height. The function p(H) has units of inverse 

length such that, when multiplied by an incremental range of height dH , the 

resulting expression p(H) dH is dimensionless and gives the probability that 

a randomly chosen wave height (denoted by A ) lies between the heights H 

and H + dH . This can be written as 

where Prob means the probability that. 

18. If a number of terms like Equation 1 are summed together over the 

range between some specified height HI and another height H2 , the integral 

takes on the meaning 

J ,: p(x) dx = Prob [H, < A < H,] 

where x is a dummy integration variable. In particular, the cumulative 

probability function P(H) is given by 

and means the probability that a randomly chosen wave height is less than the 

specific height H . Note that P(m) = 1 because all wave heights are less 

than infinitely high. The complement of the cumulative probability, called 



t he  exceedence p r o b a b i l i t y  Q(H) , i s  simply t h e  p r o b a b i l i t y  t h a t  a  random 

wave h e i g h t  i s  g r e a t e r  than  the  s p e c i f i e d  h e i g h t  H .  The exceedence p robab i l -  

i t y  can be computed from e i t h e r  

i f  P(H) i s  known, o r  from 

where Q(0) = 1 ; i . e . ,  any wave exceeds ze ro  h e i g h t  

19 .  Using the  theory of s t a t i s t i c s ,  o t h e r  p r o p e r t i e s  of a  wave h e i g h t  

d i s t r i b u t i o n  can be found. For i n s t ance ,  t h e  mode, o r  most probable wave 

h e i g h t ,  i s  determined from the  maximum of p(H) . The mean, o r  average wave 

h e i g h t ,  i s  determined from the  i n t e g r a l  of t h e  product  H p(H) over a l l  

pos s ib l e  wave h e i g h t s .  I n  t he  t e s t  d e s c r i p t i o n s  t h a t  fo l low,  formulae w i l l  be 

given f o r  t he  s t a t i s t i c a l  p r o p e r t i e s  used.  The e s s e n t i a l  p o i n t  he re  i s  t h a t  

a l l  a r e  de r ived  from a  pd f .  

R a v l e i ~ h  - P r o b a b i l i t y  Densitv 

20. As desc r ibed  by Longuet-Higgins (1952),  t he  Rayleigh pdf i s  def ined  

by 

where the  s u b s c r i p t  R i d e n t i f i e s  the  pdf a s  Rayleigh.  The symbol H,,, i s  

t he  root-mean-square wave h e i g h t .  I t  i s  a  parameter of t he  pdf and must be 

s p e c i f i e d  s e p a r a t e l y  from the  pdf .  I t  can be computed from a  s e t  of observed 

wave he igh t s  by the  express ion  



where N is the number of observed waves and Y, is the height of the nth 

wave. 

21. The pdf given by Equation 6 has dimensions of inverse length. It 

is convenient to transform it to a dimensionless form so it can be compared 

with other density functions. The only scaling parameter is Hrms ; so, if 

the pdf is multiplied by Hrms and all wave heights are divided by Hrms , a 

dimensionless form of the Rayleigh pdf is 

A sketch of the shape of this function is shown as the bold curve in the upper 

panel of Figure 1. 

22. Because of its simple mathematical definition, the Rayleigh 

cumulative probability function in dimensionless form PR(H/Hrm,) can be found 

by integrating Equation 8 with respect to H/Hrms over the limits from zero 

to H/Hrm, . The result is simply 

and, from Equation 4, the corresponding Rayleigh exceedence probability is 

23. In other computations using the Rayleigh pdf, such as the computa- 

tion of moments involving the integration of the product of the pdf with wave 

height raised to some power, there is no simple analytic integral. In such 

cases, numerical integration can be performed using the simple trapezoid rule 

with increments of AH/Hrms equal to 0.001 . Where an integration to in- 

finity is required, it has been found that a value of H/Hrm, = 6 is suffi- 

cient for the purposes of this report. Comparison of such results agrees to 

at least the three decimal places reported by Longuet-Higgins (1952). It is 

noted that all integrals of the probability functions described below must be 



Hrmq/Hrms = 1.250 
,Royleigh pdf 

'J? Beta-Rayleigh pdf 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

H/Hrms 
Figure 1. Examples of Beta-Rayleigh probability 

densities at various parameter settings 
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Hrmq/Hrms = 1.100 
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done numerically. In some of the algorithms employed by this author, it was 

found that small differences between large numbers were to be accumulated such 

that precision to at least 10 places was necessary to avoid rounding errors. 

Such precision is available on most mainframe computers. 

Beta-Ravleinh - Distribution 

24. The Beta-Rayleigh pdf introduced by Hughes and Borgman (1987) has, 

as one of three parameters, a dependence on breaking wave height which places 

an absolute limit on the extreme wave height. They recommended that, as an 

elementary initial model, the breaking wave height be set equal to water depth 

d . As a result, the equation used in this report for the Beta-Rayleigh pdf 

is the basic definition given by Hughes and Borgman (1987) with the substitu- 

tion of depth d for breaking wave height. In dimensionless form, this is 

2 b-1 
2 r ( a + b )  [~]2a[L]2a-1[l-[~]2[L)] f o r H < d  
r(a)r(b) Hrms Hrms 

- - (11 

for H > d 

where is the gamma function (see Abramowitz and Stegun 1970), the parame- 

ters a and b are given by 

and the symbol Hrmq stands for root-mean-quad wave height. It is a basic 

parameter of this pdf and can be determined from a set of N observed wave 

heights H, from the expression 



It should be noted that Hughes and Borgman (1987) defined Hrmq using a 

square root instead of a fourth root on the right side of Equation 14. This 

seems quite confusing because it results in a symbol that looks as if it 

should have dimensions of length when it actually has dimensions of length 

squared. The notation has been changed in the present report to avoid this 

confusion. The Hrmq of Equation 14 has dimensions of length as one would 

expect. This is only a modification of notation, not of the basic model. The 

effect is that one would use the square root of their Hrmq in the def ini- 

tions above (Equations 12 and 13) for the parameters a and b . 
25. Examination of the defining Equations 11, 12, 13, and 14 shows that 

the shape of the Beta-Rayleigh pdf is determined by three parameters: H,,, , 

Hrmq , and d . When the wave height and the pdf are both made dimensionless 

with H,,, , the resulting shape is dictated by two dimensionless groups of 

these parameters: H,,,/d and H,,,/d . The second of these can also be 

written as (Hm/HmS) ( H , )  so that an equivalent set of two dimensionless 

groups is H,,,/d and Hrmq/Hrms . 
26. Figure 1 illustrates some of the variety of shapes that can be 

assumed by the Beta-Rayleigh pdf for various values of these two dimensionless 

groups. Each subplot is distinguished by a value of Hm/HrmS Note that 

this ratio can never be less than one. If it equals one, then Mrmq = Hrms 

and all wave heights must be equal to each other and to H,,, . Hence, one 

would expect the pdf to become spikelike for values of H/Mms near 1.0 . 
This tendency is seen in the upper panel of Figure l. A Rayleigh pdf (the 

bold curve) is also plotted for comparison. In this case, the Beta-Rayleigh 

pdf tends to a lower probability of small waves and an increased probability 

of waves having heights near HrmS a 

27. In the middle panel of Figure 1, the ratio H,,,/HrmS is given the 

value 2 1 t 4  (= 1.189). This number has significance because it is the ratio of 

Hmq/HmS that occurs for a pure Rayleigh pdf. Here it can be seen that as 

depth increases relative to the wave height scale, i.e., HrmS/d becomes 

small, the Beta-Rayleigh pdf becomes asymptotic to the Rayleigh distribution. 

As the wave height scale becomes an appreciable fraction of the depth, the 

highest waves and those near the peak of the Rayleigh curve are much reduced 

in probability. The largest gain in probability occurs for small waves. This 

trend continues in the lower panel of Figure l where the ratio H,,q/Hrms is 

greater than in the middle panel of Figure I. This suggests a greater 



disparity between large and small waves, so the pdf tends to flatten. To 

decay properly at large H/Hrm, , the flattening effect must further increase 

the probability of small waves. 

Deepwater Asymptote 

28. The Beta-Rayleigh pdf is completely defined in the limit as the 

depth goes to infinity (in the form of the equation used here where depth has 

replaced the breaking wave height). The form given for this by Hughes and 

Borgman (1987) can be expressed nondimensionally as 

where a: is the asymptotic form of parameter a (from Equation 12) as d -+ 

and is given by 

The subscript MR on the pdf of Equation 15 stands for Modified Rayleigh. 

Hughes and Borgman (1987) refer to this pdf as a "generalized Rayleigh," which 

suggests that the Rayleigh pdf is a degenerate form of Equation 15 alone. 

While it is true that Equation 15 degenerates to the Rayleigh form, there are 

many other mathematical expressions which can also degenerate to the Rayleigh 

form, so it does not seem quite accurate to suggest that Equation 15 is the 

general expression. The word "modified" is used here instead. 

29. Examination of Equations 15 and 16 shows that the shape of the 

dimensionless function is governed completely by one parameter. In 

Equation 15, this is a , which is uniquely determined by the ratio Hrmq/Hrm, 

by virtue of Equation 16. This is like the Beta-Rayleigh pdf except that now 

there is no dependence on d . 
30. Figure 2 illustrates some of the distributions possible with the 

Modified Rayleigh pdf for select values of the parameter Hrmq/HrmS . The bold 

curve is the Rayleigh pdf , which occurs when Hrm,/HrmS = 2 l I 4  (= 1.189) and 

for which a = 1 . As Hrmq/Hrm, takes on smaller values and approaches its 



Modified Rayleigh pdf 
for various Hrmq/Hrms 

Figure 2. Examples of the modified Rayleigh probability 
density function 

lower limiting value of unity, the pdf takes on modal values (peaks) that 

become nearer to H/Hrms = 1 and has reduced probabilities for low and high 

wave heights. This is the same behavior as mentioned previously for the Beta- 

Rayleigh pdf. At the limit of Hrmq/Hrm, + 1 , the pdf becomes a spikelike 

function with all wave heights properly being made equal to Hrms . 
31. As Hr,,/Hrms exceeds 2 1 f 4 ,  one would expect a greater disparity 

between large and small waves so that the distribution tends to become 

broader. As shown in Figure 2, there is an increase in the probability of low 

waves and high waves with a corresponding reduction in the probability of 

intermediate waves in this case. The model forces an upper limit on the ratio 



Hrmq/Hrm, to be less than 3 ' l4 .  At values equal to or greater than this, or 

becomes less than or equal to 1 /2 ,  at which point the exponent 2a - 1 in 

Equation 15 becomes zero or goes negative. The pdf then has a singularity at 

the origin, meaning the most probable wave is of zero height, a condition that 

does not seem realistic. The physical significance of this is not clear. If 

measurements indicate this limit is exceeded, the model must be rejected. 

This is unlikely, however, because most of the tests discussed in the intro- 

duction indicate that ocean wave height distributions are very nearly 

Rayleigh. This means that an improved model is not expected to be very 

different from Rayleigh and, in this case, that the ratio Hrmq/Hrms is not 

likely to be very different from 2 l I 4 .  

32. This asymptotic version of the Beta-Rayleigh model is included in 

the present tests as a separate model for several reasons. It is less 

complex, having only two governing parameters (Hrms and Hrmq) instead of the 

three (Hrm, , Hrmq and d) of the more complete Beta-Rayleigh model. In the 

same sense, it has more freedom of shape than the fundamental Rayleigh pdf 

(which depends only on H,,,) and so might characterize observations better. 

This is not assured in the present test, however, because model parameters are 

set by measurements and not allowed to vary as might be done in a curve- 

fitting exercise. To be considered an improved model, a new theoretical curve 

must in fact agree better with observations. By eliminating depth dependence 

from and comparing the results with the full model, differences in the two 

versions can be clarified, and the possibility that the modified Rayleigh pdf 

provides comparable or better results than the Beta-Rayleigh pdf can be 

examined. 

Parameter Estimation Model 

33. The final version of the Beta-Rayleigh pdf to be tested here is one 

in which the parameters Hrms and Hrmq are estimated from measured, 

frequency-domain (i.e., spectral) parameters. This is done to see if the 

essential properties of a wave height distribution can be found knowing only 

processed spectral properties from the same sea state. Hughes and Borgman 

(1987) propose a preliminary set of relationships which depend on the 

spectrum-based characteristic wave height H,,,, , spectral peak period Tp , 

and water depth d . 



34. The conventional definitions of these parameters apply. That is, 

where mo is the spectral zeroth moment and where the more general spectral 

moment n is defined by 

where 

S = sea-surface variance spectral density 

f = frequency 

fl = low frequency bound of spectral definition 

f2 = high frequency bound of spectral definition 

The fl and f2 frequencies are zero and infinity, respectively, in theory, but 

in practice are bound to less diverse values. In practice, a typical value 

for fl is about 0.04 Hz and for f2 is about 0.35 Hz. Spectral peak period 

is found from Tp = l/fp where fp is spectral peak frequency, i.e., the 

frequency of the maximum of S(f) . 
35 .  Based on data and results of a study by Thompson and Vincent 

(1985), Hughes and Borgman (1987) suggested 

and 

where H S e  is the estimated value of H,,, , g is gravitational accelera- 

tion, and Hrmq,e is the estimated value of Hrmq . Equation 20 has been 

modified from that published by Hughes and Borgman (1987) to take into account 

the difference in definitions of Hrmq . 
36. In applying this form of the model in the tests that follow, the 

estimated parameters H S e  and Hrmq,e are used everywhere that the cor- 

responding true parameters Hrms and Hrmq would be used. This is important 



because the Beta-Rayleigh pdf, as given by Equations 11, 12, and 13, is in 

dimensionless form with H,,, the normalizing parameter for the pdf and the 

wave heights. When the pdf or any of its derived quantities are made dimen- 

sional to compare with observations or results from other models, the scaling 

parameter for this version of the model is H,,,,, . Any differences between 

the estimated and measured parameters are then properly carried to all levels 

of computation and will appear in the test results. 

Model Summary 

37. The four probability density function models tested here consist 

of: 

a. The Rayleigh pdf defined by Equation 8 and having H,,, as its - 
single parameter. 

b.  The modified Rayleigh pdf defined by Equations 15 and 16, 
having H,,, and Hrmq as its two parameters. 

c. The Beta-Rayleigh pdf defined by Equations 11, 12, and 13, - 
having H,,, , Hrmq , and d as its three parameters. 

d. The Beta-Rayleigh pdf defined by Equations 11, 12, 13, 19, and - 
20 with H,, , Tp , and d as its three varying parameters 
and g its fixed (in value) fourth parameter. 

Because the last two models are both Beta-Rayleigh forms, they will be 

distinguished in tables and graphs by listing their governing parameters. 

Hence, one will be referenced as Beta-Rayleigh (H,,, , Hrmq , d) and the 

other as Beta-Rayleigh (%, , Tp , d). 



PART 111: TEST DATA 

Instrumentation 

38. Data for the tests reported herein were taken from the measurements 

archive of CERC's FRF in Duck, NC. A general description of the site and the 

facility is given by Birkemeier et al. (1985). 

39. Data from two instruments are used. One instrument is a high- 

resolution, linear array, directional wave gage. It consists of nine, bottom- 

mounted pressure sensors placed straight along a constant isobath line. It 

provides detailed estimates of the frequency-direction spectra of ocean- 

surface wind waves. A detailed description of this gage is given by Long and 

Oltman-Shay (in preparation). The other instrument is an ocean-surface- 

following buoy instrumented with vertically sensitive accelerometers. 

Accelerometer signals are integrated twice to provide a measure of sea-surface 

displacement. Called a Waverider by its manufacturer, this buoy provided the 

basic wave height information used in the present tests. 

40. Figure 3 shows the positions of the two gages relative to each 

other and to the FRF research pier. Both gages are roughly 1 km offshore 

where the water depth is nominally 8 m. Note that this water depth is greater 

than the very shallow conditions sampled by other investigators as mentioned 

in the introduction. Active depth-induced wave breaking happens at this depth 

only during extreme conditions. On the other hand, this depth is considered 

either to be intermediate or shallow for all wind waves of interest. Hence, 

the effects of finite depth should become apparent. The idea is to test the 

different wave height distribution models in shallow water but outside the 

commonly defined breaker zone to determine their efficacy in that application. 

41. In addition to the above test criterion, the Waverider was chosen 

from a set of alternative sea-surface displacement gages for two reasons. One 

was its proximity to the linear array directional wave gage. This lent some 

validity to the assumption that both gages were sampling the same wave field. 

42. The other was the relative purity of its signal. The bottom- 

mounted pressure gages of the linear array could have been used to measure 

wave height distributions. However, they would be subject to errors in 
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individual wave height measurements incurred by using the linear wave pressure 

response function in high wave conditions where the assumption of linearity is 

suspect. In addition, contributions by high-frequency waves would be effec- 

tively filtered from the signal by the water column so that wave height 

estimates would further be degraded. The Waverider does not have these 

problems. It is a surface-following buoy with a reasonably flat frequency 

response from about 0.06 Hz to about 0.50 Hz. It has a rather sharp roll-off 

below 0.06 Hz and so does not respond well to tides, storm surge periods or 

infra-gravity waves. As a result, its signal does not have to be detrended to 

find a stable datum about which to estimate wave heights. The buoy has a 

buoyancy resonance at a frequency of about 0.8 Hz, but this is beyond the 

frequency of most wind waves of interest. The manufacturer claims a minimum 

sea-surface displacement resolution of 0.02 m and an accuracy of 23 percent of 

the signal in the flat-response portion of the spectrum. 

43. For each of the test observations, both gages were sampled at 2 Hz 

for time series of 16,384 points, a duration of about 2 hr, 16 min. Time 

series from each of the linear array pressure gages were Fourier transformed 

(as an average of the transforms of 15, windowed, half-overlapping, 

2,048-point segments, smoothed over 10 adjacent bands for a final resolution 

frequency bandwidth of about 0.01 Hz and spectral density estimates with about 

150 degrees of freedom) and converted to sea-surface displacement spectra 

using the linear wave theory pressure response function. These results were 

used to estimate cross-spectral densities between every unique pair of gages 

for wave frequencies in the range from 0.05 to 0.32 Hz. Wave energy direc- 

tional distributions were determined from cross-spectral data using the 

iterative maximum likelihood estimation method described by Long and Oltman- 

Shay (in preparation). 

44. Waverider data were analyzed in four steps. First, the signal mean 

was removed from the time series that was considered to be a single segment of 

16,384 data points. This was necessary because of an electronic bias imposed 

by one of the land-based signal amplifiers. The buoy itself had no mean 

displacement from sea-surface mean level, defined as an average over any time 

period longer than the buoy's low-frequency response cutoff. In the second 



step, the demeaned signal was Fourier transformed to determine a raw frequency 

spectrum of the sea-surface variance and a set of Waverider spectral parame- 

ters (described below). The analyzed record was so long that no windowing was 

done; variance leakage between adjacent frequency bands would be very small. 

The raw spectrum was averaged over 64 bands to create a smoothed spectral 

density estimate with 128 degrees of freedom. Third, the raw Fourier trans- 

form was truncated at frequencies commonly considered to bound ocean wind 

waves, and a new set of spectral parameters was computed based on the filtered 

spectrum. Here the low-frequency cutoff was 0.04 Hz, and the high-frequency 

bound was 0.35 Hz. Fourth, the filtered Fourier transform was inverted (back 

transformed) to provide a filtered time series. This time series was analyzed 

by the zero up-crossing method to isolate a set of wave heights to be used for 

model comparisons. 

45.  As noted by Thornton and Guza (1983), there is a certain amount of 

subjectivity in selecting pass-band limits for a filtered time series. 

Clearly, the filtered signal will be different as the limits change, having 

more or less contribution from high- and low-frequency parts of the raw 

signal. Curiously, this should make no difference to the statistical wave 

height distribution models considered here. All rely on the assumptions of a 

large number of wave components in random phase from a narrow range of 

frequencies. If these conditions are met, it must be presumed that the height 

distribution parameters (H,,, for the Rayleigh pdf and, additionally, Hrmq 

for the other three models) adjust internally to compensate for the effects of 

changing frequency content. The validity of this assumption was not tested 

here because the present task is limited to evaluation of signals that have 

been filtered at commonly defined cutoff frequencies. However, a test of this 

assumption is important and should be done in future work. 

Sea State Characteristics 

46 .  Figure 4  illustrates a frequency-direction spectrum as determined 

from the linear array directional wave gage. Note that direction 0 is the 

direction measured counterclockwise from shore normal. It represents the angle 

from which waves are coming for an observer looking seaward. A positive angle 

means a wave train is arriving from the observer's left or from the northeast 

quadrant at the FRF. 
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47. The panel labeled "frequency spectrum" in the upper part of 

Figure 4 shows the sum over all directions of the variance (energy) at each 

frequency. It is the variance spectrum that one would measure with any 

conventional, nondirectional gage. The area under this spectrum gives an 

estimate of the energy based wave height defined by Equations 17 and 18. 

The frequency of the maximum spectral density is the peak frequency fpPIFS 

(meaning frequency at the peak of the integrated frequency spectrum), the 

inverse of which gives the peak period TprIFS . 
48. The panel labeled "direction spectrum" in the upper part of 

Figure 4 is the sum over all frequencies of the wave variance at each direc- 

tion. Two parameters are deduced from this curve. The direction at the 

maximum of the direction spectrum is the peak direction 6p,IDS (meaning 

direction at the peak of the integrated direction spectrum). A measure of the 

angular spread of wave energy is given by the angle subtending the central 

half of the area under the direction spectrum AdIDs , found by dividing the 

area into four equal parts and finding the difference between the angles that 

bound the middle two parts. 

49. The five parameters just discussed give some indication of the 

frequency and direction characteristics of the sea state. They do not provide 

a complete description, however. This can be seen by examining the lower part 

of Figure 4, which is a contour plot of the frequency-direction spectrum. 

This figure illustrates regions in frequency and direction where there are 

heavy concentrations of energy. Shown are two (and possibly three) modes in 

the energy distribution. Counting the number, size, and location of these 

modes begins to make a rather lengthy list of parameters. Hence, the test 

data are characterized here by the five frequency and direction parameters, 

which are listed in Table 1, and the graphs which illustrate the frequency- 

direction spectra. Figure 4 is one test case. Figures for the remaining test 

cases are shown in Appendix A. 

50. Figure 5 illustrates the frequency spectrum of the Waverider signal 

from the same time span that Figure 4 was derived. The spectrum is shown in 

two guises. The upper frame of Figure 5 shows the smoothed frequency spectrum 

in linear coordinates and contains a list of parameters derived from the full 

(unfiltered) Waverider spectrum. The lower frame shows the smoothed spectrum 

(as the bold line) as well as the raw spectrum in semilogarithmic coordinates. 
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This form of display emphasizes the low energy part of the spectrum and makes 

clearer what is being eliminated by filtering the signal. 

51. The parameters Go , Tp , and fp in Figure 5  can be compared 

with the corresponding linear array parameters in Table 1 to see if there are 

important differences. For instance, KO is higher in Figure 5, suggesting 
that some energy was lost from analysis by clipping the spectrum at 0.35 Hz. 

Note that the shapes of the frequency spectra within the pass band from 

Figures 4 and 5  should (ideally) be identical and are, in fact, very similar 

qualitatively. 

5 2 .  The parameter E shown in Figure 5  is a measure of the broadness 

of the frequency spectrum as defined by Cartwright and Longuet-Higgins (1956). 

It is defined by 

where the moments m, are defined by Equation 18. A small E indicates a 

narrow spectrum, and an E near 1 indicates a broad spectrum. In Figure 5, 

E is computed using the full spectrum from 0 to 1 Hz. In Table 1, a value is 

listed for E based on the filtered spectrum (bounded by 0.04 and 0.35 Hz). 

Comparison of E from Figure 5 with that from Table 1 suggests that filtering 

the spectrum does, in fact, make it narrower by this definition because the 

parameter drops from 0.792 for the full spectrum to 0.618 after filtering. 

53. For completeness, plots of the Waverider spectra for the other test 

cases are included in Appendix B. The small spike at very low frequency which 

appears in several of the plots is evidently due to a cyclic drift in some 

electronic component of the Waverider or the data acquisition system. It is 

removed upon filtering the signal, and tests indicate that including it does 

not substantially alter the resulting wave height data. 

Test Cases 

5 4 .  To keep this investigation brief, a set of 11 test cases was 

isolated for analysis. Integral frequency and direction parameters are listed 

for these cases in Table 1. The primary criteria for selection were a range 

of directional spreads ABIDs and a range of wave energies as indicated by 



Table 1 

Parameters of Test Data 

Frequency Domain (Source: Linear  Array) Time Domain (Source: Waverider) 

d f p , ~ ~ ~  T p , ~ ~ ~   IDS *@IDS G o  'rms 'rmq 'rms,e 'rmq,e 
Case Date Time m Hz m m sec  deg deg E m m m 

1 14 Sep 1986 0700 7.00 0.093 10.72 30.0 54.5 0.618 0.75 0.48 0.56 0.55 0.64 
2 21 Sep 1986 1800 7.36 0.083 11.98 -14.0 27.8 0.759 0.52 0.33 0.40 0.37 0.42 
3 15 Feb 1987 0100 7.23 0.181 5.52 14.0 48.7 0.564 0.73 0.44 0.51 0.48 0.56 
4 16 Feb 1987 0100 7.35 0.191 5.24 26.0 40.6 0.489 1.70 1.03 1.20 1.09 1.28 
5 16 Feb 1987 1900 8.26 0.152 6.58 12.0 48.6 0.523 2.18 1.42 1.67 1.51 1.76 

6 16 Feb 1987 2200 8.14 0.142 7.04 16.0 48.6 0.563 2.64 1.71 2.02 1.81 2.11 
7 17 Feb 1987 1600 7.53 0.103 9.71 -8.0 41.3 0.669 3.14 2.21 2.64 2.43 2.78 
8 17 Eeb 1987 1900 8.20 0.093 10.72 -8.0 45.9 0.659 2.95 1.96 2.32 2.13 2.46 
9 18 Feb 1987 0100 7.67 0.093 10.72 6.0 43.8 0.687 2.44 1.64 1.94 1.82 2.08 
10 18 Feb 1987 0700 8.06 0.093 10.72 -10.0 44.8 (1.656 2.19 1.40 1.66 1.54 1.77 

11 19 Feb 1987 1900 7.73 0.152 6.58 14.0 43.5 0.573 1.30 0.63 0.74 0.68 0.79 

H . Case 1 is an example of broad directional spread given the range of 

directional spreads of 20 to 60 deg normal for this site as reported by Long 

and Oltman-Shay (in preparation). Case 2 is an example of narrow directional 

spread. Both of the first two cases are of relatively low energy. Cases 3 to 

11 are from a sequence of measurements before, during, and after a large storm 

in February 1987. Although large energy is achieved in this series (Hmo 

equal to 3.1 m in 7.5-m water depth), there is little variation in directional 

spread. This is consistent with the findings of Long and Oltman-Shay (in 

preparation), who showed that directional spreads are most commonly in the 

range 30 to 50 deg in high energy situations. 

55. Table 1 also shows the basic governing parameters of the wave 

height distribution models. The parameters Hrms and Hrmq are deduced from 

the set of zero up-crossing wave heights by Equations 7 and 14, respectively. 

Parameters H m e  and Hrmq,e were found from Equations 19 and 20, respec- 

tively, using parameters b0 and Tp deduced from the filtered spectra of 

the Waverider data rather than from the directional wave gage. It was felt 

that parameters for a second-order model should come from the same gage as the 

data used to test the model, so the Waverider , ,  and Tp were used in the 

Beta-Rayleigh model relying on those parameters. They are not listed in 

Table 1 because they are all within a few percentages of the corresponding 

parameters found from the linear array. They are given in the headers of the 

plotted results below, however, so the reader may verify this. 



56. Curiously, the spectral width parameter E does not vary a great 

deal over the present variety of test cases. It goes from about 0.49 to about 

0.76, not a very broad range given the expected properties of the height 

distributions of such spectra discussed by Cartwright and Longuet-Higgins 

(1956). This may be a fortuitous consequence of using a small batch of test 

cases, a result of filtering the spectra (compare the E of Table 1, based on 

filtered spectra, with those based on unfiltered spectra and listed in 

Waverider spectral plots) or, as suggested by Goda (1975), a property of 

spectra with a tendency to behave as f-5 at frequencies higher than f, . 
In any case, the current tests do not stress the limits of this parameter very 

much. 

57. On the other hand, the ratio H,,,/d varies by almost an order of 

magnitude. This is a parameter that is quite important in the formal Beta- 

Rayleigh pdf of Equations 11, 12, and 13 when it achieves any value of 

order 1. From the variables listed in Table 1, it becomes as large as about 

0.3. The smallest value it assumes in the present set of tests is about 0.04. 

This is a sufficient range to determine if the effects of finite depth give an 

advantage to the Beta-Rayleigh pdf over the Rayleigh pdf in shallow water. 



PART IV: TEST RESULTS 

58. The four models were tested in three different ways. One test is a 

comparison of the exceedence probability defined by Equation 5 for the models 

with that deduced from the wave height data. The second test examines the 

ability of the four models to estimate the average of a given fraction of the 

highest waves. The third test compares observed and model predictions of the 

maximum wave height. 

Wave Height Distributions 

59. The most straightforward test is that which uses the model defini- 

tions directly. Because they are probability density functions, the data must 

be interpreted in the form of probability densities. The most common way to 

do this is to form a histogram from the data. If the set of N observed wave 

heights Y, are all normalized by H,,, as determined through Equation 7, the 

number J, that fall in the range u AH/H,,, and (u+l) AH/Hrm, can be 

divided by N to compute the fraction (or estimated probability) of this 

occurrence. In this definition, u is the index of a bin in a discrete 

histogram and J, is the population of that bin. When the fraction J,/N is 

divided by AH (an incremental wave height range arbitrarily chosen by the 

investigator), and multiplied by H,,, to make the result dimensionless, the 

result is an estimate of the normalized pdf for that data set. 

60. An example of such a computation is shown in the upper panel of 

Figure 6 as the stepped curve representing the estimated pdf for test Case 1. 

The wave height range bins were chosen to be AH = 0.05 H,,, as a trade-off 

between resolution on the abscissa and number of contributions to the bins 

with low densities. Superimposed on the histogram are curves representing 

each of the four models being tested. At the top of the figure are listed the 

parameters used in specifying the model curves. With the exception of depth 

d , which was obtained from the linear array, all parameters are determined 

from the Waverider time series, filtered through the frequency pass band 

shown. 

61. What is evident in Figure 6 is that differences between the models 

for a given H/Hrm, are of the same order as the scatter of the histogram 
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points about what one would imagine is a smooth curve representing the data. 

Computing, for example, RMS differences between the histogram and the model 

curves would not be conclusive because the histogram is not well resolved 

(even with the 1,693 waves observed in this case). This is especially true in 

the tail of the distribution, at high H/Hrm, , where important differences in 

the model curves exist. One could improve the smoothness of the histogram by 

increasing AH , but then the histogram bins become so wide that substantial 

variations in model values can occur across one bin. It then becomes dif- 

ficult to decide where within a bin to evaluate the model for comparison with 

the one data point represented by that bin. Hence, even though the histogram 

method was employed by Hughes and Borgman (1987) and Thornton and Guza (1983) 

to argue for model validation, the method is rejected here. The histogram is 

presented for illustration only. 

62. A less subjective and not much more complicated model test is to 

use the integral of a model pdf in the form of a cumulative probability or an 

exceedence probability in a comparison with corresponding data estimates. If 

a set of N observed, normalized wave heights H,/H,,, are ordered from 

smallest to largest, the probability that any of the wave heights is less than 

the height of wave n is simply n/(N+l) . This procedure provides an 

estimate from the data of the cumulative probability distribution. The data 

estimate of exceedence probability Qd(%/Hrms) is 1 minus the cumulative 

distribution at height n and is given by 

It should be noted that this method differs from the method given in the SPM 

(1984) in that estimates are computed here with N + 1 vice N . As ex- 

plained by Dr. L. F. Borgman of the University of Wyoming in a lecture at CERC 

on 13 May 1986, use of N by itself suggests that, for the N~~ measured 

wave, one has a height which cannot be exceeded. This is true for the 

observation set but highly unlikely for the much larger population of waves of 

which the measurements are but a small sample. Use of N + 1 provides a much 

better estimate of the cumulative probability of the N" wave in this larger 

population. 



6 3 .  Model estimates of the exceedence probability are found by using a 

defining model pdf in Equation 5, as adapted to nondimensional coordinates. 

The resulting exceedence probability takes the generic form 

In application, this integral can be evaluated numerically using the method 

described in Part 11. By interpolating the discrete numerical results to find 

the model H/Hrms corresponding to data estimates Qd(HJHrmS) , one can 

compare values of wave height for the data-specified exceedence probabilities. 

6 4 .  The lower panel of Figure 6  shows data estimates of exceedence 

probability (symbols) along with model estimates (patterned lines) for test 

Case 1. A semilogarithmic coordinate system has been used to expand the high- 

wave tail region of the distribution for easier visual comparison. The 

qualitative result is quite interesting. Where the model curves can be 

distinguished, the data appear to follow very closely both the modified and 

formal Beta-Rayleigh curves. These almost coincide because Hrms is small 

relative to the water depth so the formal Beta-Rayleigh curve is approaching 

the deepwater asymptote. This means the shapes of these curves are governed 

more by the ratio of Hrmq to Hrms than directly by water depth. 

65. The Rayleigh curve appears to lie above the data in Figure 6 .  This 

means that, for a given H/Hrms , the Rayleigh model gives a higher probabili- 

ty of exceedence (or, conversely, for a given probability of exceedence, a 

higher wave height is indicated). This is qualitatively consistent with 

observations by other investigators, as discussed in the introduction, that 

the Rayleigh model tends to overpredict the higher waves. In terms of 

magnitude of exceedence probability, the overprediction is not large on the 

scale of the graph as a whole, being about two parts per thousand (compared 

with one) at H/HrmS - 2.0 , but is significant relative to the local proba- 
bility, being about 20 percent at the same H/Hrms . Conversely, for a fixed 

exceedence probability, the overprediction of wave height by the Rayleigh 

model is small, being roughly 3  percent at the higher wave heights. 

6 6 .  The estimated Beta-Rayleigh model appears to underestimate the 

observations and the other models. It is roughly 10 percent lower than the 

Rayleigh model and about 6  percent lower than both the data and the formal 



Beta-Rayleigh curve at the larger wave heights. The reason for this deviation 

can only be that H m  and Hrmq,e are different from Hrmq and H,,, , 

respectively, because it is the shift in governing parameters that distin- 

guishes the two models. Comparison of estimated and measured root-mean-square 

and root-mean-quad wave heights (listed at the tog of Figure 6) shows that the 

estimated values are both about 10 percent higher than the measured values. 

The magnitude of this deviation is consistent with deviations about the 

estimation curves (Equations 19 and 20) shown by Hughes and Borgman (1987). 

Evidently, the Beta-Rayleigh model is somewhat sensitive to the values of the 

parameters used. This is especially true on the deepwater asymptote where the 

shape governing parameter Hrm,/Hrms is restricted to values between 1.0 and 

about 1.3 (see Figure 2 and related discussion). A 10-percent deviation on 

either side of the middle of this range exceeds this range. This suggests 

that great care must be exercised in estimating Hrms and Hrmq . 
67. It is noted that all of the curves in Figure 6 are actually quite 

good approximations of the data. It just appears that the formal Beta- 

Rayleigh and the modified Rayleigh are slightly better than the other two. 

This pattern is consistent in all of the test cases. Graphs like Figure 6 for 

the remaining test cases are given in Appendix C. 

68. Of particular interest is the model comparison at high energy. 

Cases 5 to 10 all have in excess of 2 m and Hrm,/d in the range 0.17 to 

0.29, large enough to distinguish the shapes of the modified Rayleigh and the 

formal Beta-Rayleigh models. In qualitative description, the tendency for the 

Rayleigh model to overpredict the data still exists, but is generally only 

between 0 and 2 percent high. The modified Rayleigh curve appears to agree 

best with the data and also appears to be quite close in shape to the Rayleigh 

curve. Where the modified Rayleigh model deviates from the Rayleigh curve, 

the deviation is generally toward the data. The formal Beta-Rayleigh model 

indicates smaller extreme wave heights at the same probability than either the 

Rayleigh or modified Rayleigh models. It appears in these tests to deviate 

from the modified Rayleigh curve only for H/H,,, > 2.0 , a region in which 

the scatter of the data increases. There appears to be a tendency for the 

formal Beta-Rayleigh model to underpredict the data and to be less than the 

modified Rayleigh curve, though these differences are rather slight. The 

estimated Beta-Rayleigh model is consistently lower than the data and all the 

other models at the larger wave heights. 



69. In an attempt to quantify these differences in a simple way, the 

RMS difference in H/Hrms between the data and each model for exceedences at 

all data points was computed. Results are shown in Table 2. If the number in 

each column is multiplied by 100, the result is the RMS difference as a 

percentage of the parameter Hrms for each test case. The average normalized 

RMS difference for each model is shown on the bottom row. 

70. Curiously, the modified Rayleigh model is as good as, if not a lot 

better than, all the other models. Its maximum deviation, about 0.025, is 

less than the mean deviation of the Rayleigh model. It has about the same RMS 

deviation as the formal Beta-Rayleigh model in all cases except for two of the 

highest energy cases (6 and 7) where it has somewhat less deviation from the 

data. This is important because the depth dependence of the Beta-Rayleigh 

model is at or near maximum in these two cases and it appears that the depth- 

independent model yields a better result. This suggests that it may be 

necessary to do additional work on the model for the case of shallow water 

waves in incipient-breaking conditions, i.e., at or just outside the seaward 

edge of the breaker zone. Note that the dominantly varying parameters in this 

sequence are the total energy and related wave height scales. Neither 

directional nor frequency spread parameters show a strong variation. The 

frequency and frequency-direction spectra do not show any significant 

Table 2 

Root Mean Square Difference of Measured Data and 

Models of Cumulative Wave Height Distribution 

Model Name and Parameter S e t  
Modified Beta- Beta- 

Rayleigh Rayleigh Rayleigh Rayleigh 
Case Date Time --- Hrms Hrms Hrmq H ,,,. Hrmq,d H,,,,,TpJd 

1 14 Sep 86 0700 0.0286 0.0092 0.0098 0.0408 
2 2 1  Sep 86 1800 0 .0201  0.0223 0.0220 0,0812 
3 15  Feb 87 0100 0.0333 0.0162 0.0167 0 . 0 2 9 1  
4 1 6  Feb 87 0100 0.0333 0.0105 0 .0115  0.0142 
5 1 6  Feb 87 1900 0.0278 0.0153 0 .0171  0.0184 

6 1 6  Feb 87 2200 0.0285 0.0242 0.0312 0.0324 
7 1 7  Feb 87 1600 0.0240 0 .0191  0 . 0 3 2 1  0.0785 
8 17 Feb 87 1900 0.0205 0.0228 0 .0185  0.0507 
9 1 8  Feb 87 0100 0.0167 0.0186 0.0153 0.0703 

10 1 8  Feb 87 0700 0.0235 0.0247 0.0228 0.0623 

11 1 9  Feb 87 1900 0.0312 0.0132 0.0130 0.0218 

Mean 0 .0261  0.0178 0 . 0 1 9 1  0.0454 



deviations of shape. Hence, it is unlikely that any of these parameters 

correlates well with deviations of the Beta-Rayleigh curve from the data. 

71. In order of increasing deviation, the classic Rayleigh model is 

third and the estimated Beta-Rayleigh is fourth. The Rayleigh curve is rather 

consistently different by about 2 to 3 percent of H,,, over most cases. The 

estimated Beta-Rayleigh is, overall, quite a bit worse than the other models. 

It does about as well as its parent model in test Cases 4, 5, and 6, but more 

typically has deviations of two to four times those of the modified Rayleigh 

model. 

Wave Hei~ht Avera~es - 

72. The RMS deviations listed in Table 2 are strongly weighted by waves 

with heights between 0.5 and 1.0 times H,,, because, by the definitions of 

the probability densities, this is where most of the waves occur. To evaluate 

the models over different regions of probability space, it might be interest- 

ing to isolate some part of the tail region and compute the RMS differences of 

data and models over this domain. On the other hand, there are some common 

wave height statistics that will, in effect, allow such comparisons to be made 

indirectly. These are the averages of the highest fraction of waves where the 

fraction r is allowed to vary from some small value to unity. One of the 

most commonly cited parameters of this group is the average of the highest 

one-third of the waves in a given sea state. Here, this will be given the 

symbol H("~) following the notation of Longuet-Higgins (1952) (the SPM 

(1984) and some other references use the symbol , instead), with the 

general form being a function of r and written as H . For small values 

of the fraction r , the computations will be confined to the high-wave tail 

of the distribution. Comparability of data and models can then be evaluated 

indirectly over any arbitrary part of the high-wave domain, at least where 

there are sufficient data to compute a stable average. 

73. Following the derivation given by Longuet-Higgins (1952), the 

fraction r of waves that are larger than a given value of H/H,,, is the 

exceedence probability for that H/H,,, . From basic statistics, the average 

value of waves higher than a given H/H,,, is the integral from that H/H,,, 

to infinity of the normalized heights weighted by the probability density 



function and divided by the area over the same limits under the weighting 

function (i. e. , the pdf) . Hence, the general forms for r and H ( ~ ) / H ~  are 

.= j'" H/ Hrms [.rmsp[e)] d[&] 

Hrms r 
H' Hrms 

where the terms in square brackets are to be the dimensionless pdf models 

under consideration and the integrations are performed numerically as de- 

scribed in Part 11. 

7 4 .  For a set of N measured, normalized, ordered wave heights 

H,/Hrms , the computation for a discrete, monotonically increasing fraction rj 

where j is the index is given by 

When both data and models of H(')/H,,, have been computed, the resulting 

arrays can be interpolated for particular values of the fraction r . 
75. Figure 7  shows the function H ( ) / H ~ ~  for the four models (using 

the model pdf formulae in Equations 24 and 25) and the data estimate, 

Equations 26 and 27, for test Case 1 and for r > . Model parameters are 

iterated at the top of the figure. A semilogarithmic scale has been used to 

expand the small-fraction region. 

7 6 .  Results indicated by Figure 7 are similar to those indicated by 

Figure 6 .  The modified Rayleigh and formal Beta-Rayleigh models are not very 

different, again because depth is large relative to Hrms . The Rayleigh 

curve indicates a larger mean wave height for a given fraction r than the 

formal Beta-Rayleigh and the modified Rayleigh curves. It is also larger than 

the data indicate for most values of r , consistent with its tendency to 

overpredict wave heights. The estimated Beta-Rayleigh curve underestimates 

the observed mean normalized wave heights for all fractions. Similar general 



Wave Height Averages: Gage 640 
Date: 14 Sep 86 Time: 0700 

Frequency Pass Band: 0.040 Hz i f i 0.350 HZ 

Hmo = 0.740 m d = 7.00 m E = 0.618 

Hrms = 0.477 m 
Tp 2 

= 10.23 s e c  e s t .  H rms  = 0.554 m 

Hrmq  = 0.559 m d/gTp = 0.00681 e s t .  H rmq  = 0.635 m 
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Figure 7. Observed and modeled averages of the highest fraction r 
of wave heights for test Case 1 
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patterns can be seen in wave height average curves for the other test cases, 

which are shown in Appendix D. 

77. The wave height average values appear to vary more smoothly in 

Figure 7 than do the source wave heights in Figure 6. This smoothness is an 

artifact of averaging and, for the larger wave heights, give the impression 

that deviations of data and model curves are a result of modeling errors. 

While this is possible, it is more likely that such deviations are due to poor 

sampling of the largest wave heights. There are very few of these in any 

given sample (there is only one largest wave height) so that confidence 

intervals are somewhat broad. Consideration of deviations of the largest wave 

height is given in the next section of this report. The point here is that 

reasonable model comparisons are difficult when the possible sampling error is 

as large as the range of values predicted by the set of test models. 

78. A crude idea of the sampling problem can be obtained by scanning 

the graphs in Appendix D and Figure 7 to see how much the low-fraction part of 

the data varies relative to the set of model curves. For the small and 

intermediate wave heights, there are enough samples for much more stable 

estimates of the averages. If the errors in the largest wave heights are 

random and not biased, then averages through a relatively small number of the 

largest waves will tend to converge rather rapidly to the true population 

average. Hence, it can be expected that data in Figure 7 near H( ' /~" )  I H r m ,  

are more reliable than data near H ( ~ / ~ ~ ~ ~ )  /H,,, so that, in subsequent model 

comparisons, data at very small r are not used. 

79. Model tests are conducted by finding the dimensional model es- 

timates of wave height averages for five values of r and comparing these to 

measured averages at the same r , interpolating the discrete data curves 

where necessary. Specific averages are H ( l t l )  (the average of all waves), 

H(' l3)  (the conventional time domain characteristic wave height), H('/") , 

H"'~'' , and H('~'") , where this last height is expected to be reliably 

estimated from data because of the large number of waves (of order 1,000) in 

each time series. All dimensionless model computations are made dimensional 

with the observed H,,, except for the estimated Beta-Rayleigh model. This 

must use H e  because one of the test criteria is that only Q, , Tp , and 

d are known for this model. 

80. Table 3 lists the average heights thus found for each test case and 

for each r . The percent difference of each model estimate from the data is 





Table 3 (Concluded) 

Model Name and Parameter  S e t  
Modified Beta-  Beta-  

Rayle igh  Rayle igh  Rayle igh  Rayle igh  

~ b s  . (Hrms (Hrms pHrmq) ( Hrms, fir,q. d ) (q, ,orTp,d)  

(r) H(r) (I) H(r) (r) 
H d i f f .  H d i f f .  d i f f .  H d i f f .  

Case Date Time m m 4: m 4: m X  m X  - - -  - -  - - - - 

Case ( d )  r = 1 / 2 0  

1 14 Sep 86 
2  2 1  Sep 86 
3  15  Feb 87 
4  1 6  Feb 87 
5  1 6  Feb 87 
6  16 Feb 87 
7  17 Feb 87 
8  17 Feb 87 
9  1 8  Feb 87 

10 1 8  Feb 87 
11 1 9  Feb 87 

Mean 1 9 6 1  1 . 8 4  0 .69  0.83 4 .57  

Case ( e )  r = 1 /100  

1 14 Sep 86 
2  2 1  Sep 86 
3  15  Feb 87 
4  1 6  Feb 87 
5  16 Feb 87 
6  16 Feb 87 
7  17 Feb 87 
8  17 Feb 87 
9  18 Feb 87 

10 18 Feb 87 
11 19 Feb 87 

Mean 1 9 6 1  2 . 9 8  1 .54  1 . 8 5  4 . 4 4  

coefficients of the observations with each model are given at the top of each 

correlation plot. 

81. Information in Table 3 is consistent with findings from the overall 

RMS difference comparison of the last section. The modified Rayleigh and 

formal Beta-Rayleigh models are almost indistinguishable for the four largest 

values of r , having differences from the data typically less than 1 percent. 

In the same range of r , the Rayleigh model is worse but only slightly so, 

with some of the larger differences between 2 and 3 percent. The estimated 

Beta-Rayleigh has the greatest deviations, with differences of 5 to 15 percent 

not uncommon. 

82. There does not appear to be any particular deviation or trend in 

the comparisons related to frequency or directional spread parameters. Cases 

1, 2, 3, and 11 are all relatively low energy cases with diverse spectral 

structure, yet the Rayleigh, modified Rayleigh, and formal Beta-Rayleigh 



models all do very well in estimating characteristic heights. It should be 

pointed out that, for the two largest values of r , model and data differen- 

ces for these three models are generally comparable to or less than instrument 

accuracy (k0.02 m), so the percentages given are mostly within measurement 

noise. 

8 3 .  The most stringent test here is for the smallest fraction, 

r = 1/100 , and for the largest characteristic wave heights, test Cases 4 to 

10. Examination of that part of Table 3  indicates less diversity among the 

models. The modified Rayleigh continues to do best with a typical difference 

of 1 percent and a maximum difference of 3.3 percent. The other three models 

seem about the same with typical differences of about 2 percent and maximum 

differences of 5 to 8  percent. There is a tendency for the formal Beta- 

Rayleigh to have results consistently lower than observations (most of the 

signs are negative at the highest energies), a trait not seen in the modified 

Rayleigh model results. It is possible that the effects of finite depth as 

employed in the formal Beta-Rayleigh model (breaking wave height equals water 

depth) affects the high-wave tail region of that model in a way that causes 

this bias. This should be investigated further because it could also be 

statistical variation due to a small set of test cases. 

8 4 .  The correlation plots of Figures 8 to 12 illustrate the data of 

Table 3 .  The correlation coefficients are all quite high, being in excess of 

0.999 for all models and all fractions except for the estimated Beta-Rayleigh 

model at the largest and smallest r , where correlation coefficients of about 

0.998 occur in both cases. Note that the correlation coefficient gives a 

measure of how well a set of coordinate points is represented by a straight 

line but not necessarily a line of slope 1.0 . The difference percentages in 

Table 3  are a better measure of that type of deviation. 

85. The modified Rayleigh and the formal Beta-Rayleigh models have the 

highest correlation coefficients with the data for all r . Their correlation 

coefficients are almost indistinguishable. The Rayleigh model follows these 

two in all cases except for the smallest r , where the estimated Beta- 

Rayleigh is better correlated with the data. This ordering of the models is 

consistent with prior discussion. 



Svmbol M& C o r r e l a t i o n  

A R o y l e i q h  0 .999903  
V M o d i f i e d  R a y l e i q h  (Hrms,Hrmq) 0 .999984  
o Be ta -Ray le iqh  (Hrrns,Hrmq,d) 0 .999965  
0 Beta -Ray le iqh  ( h . T p , d )  0 .997824 

0.0 0.5 1.0 2.0 2.5 

measured H(1/k5(m) 

Figure 8. Correlation plot of observed 
and modeled H('/') 

Svmbo l  Model C o r r e l a t i o n  

A R a y l e i q h  0.999875 
V M o d i f i e d  R o y l e i q h  (Hrms,Hrmq) 0.999936 
0 Beta -Ray le iqh  (Hrrns,Hrmq,d) 0 .999926 
0 Beta -Ray le iqh  (Hmo,Tp.d) 0 .999830 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

measured H(''~) (rn) 

Figure 9. Correlation plot of observed 
and modeled H('I3) 



Svmbo l  Model C o r r e l a t i o n  

A R a y l e i q h  0 . 9 9 9 6 9 0  
V M o d i f i e d  R a y l e i q h  (Hrrns,Hrmq) 0 . 9 9 9 9 5 1  
o B e t a - R a y l e i q h  (Hrrns,Hrmq,d) 0 .999954  
0 B e t a - R a y l e i q h  (Hno .Tp .d )  0 .999666  

0.0 0.5 1.0 1.5 2.0 3 .0  3.5 4.0 4.5 

m e a s u r e d  (m) 

Figure 10. Correlation plot of observed 
and modeled H ( ~ ' ~ ~ )  

Svrrho l  M- C o r r e l a t i o n  

A R a y l e i q h  0 . 9 9 9 3 4 2  
V M o d i f i e d  R a y l e i g h  (Hrrns,Hrmq) 0 . 9 9 9 8 6 6  
0 B e t a - R o y l e i q h  (Hr rns ,Hrmq,d)  0 . 9 9 9 8 1 2  
0 B e t a - R a y l e i q h  ( H n o . T p . d )  0 . 9 9 9 0 4 1  

0 

0.0 0.5 1.0 1.5 2.0 2.5 3 0  3.5 4.0 4.5 5.0 

m e a s u r e d  H " ' ~ ~ )  (m) 

Figure 11. Correlation plot of observed 
and modeled H('I2O) 



Svmbol M o d e l  C o r r e l a t i o n  

n R a y l e i g h  0 . 9 9 9 2 3 9  
v M o d i f i e d  R a y l e i g h  (Hrrns.Hrmq) 0 . 9 9 9 3 6 6  
o B e t a - R a y l e ~ q h  (Hr rns ,Hrmq,d)  0 . 9 9 9 3 3 0  
0 B e t a - R a y l e i q h  ( H n o , T p . d )  0 . 9 9 8 3 0 6  

LO 

0.0 0 5 1.0 1.5 2.0 2.5 3 0 3 5 4.0 4.5 5.0 5.5 

measured H ( ' ' ' ~ ~ )  (m) 

Figure 12. Correlation plot of observed 
and modeled H ( ~ ' ~ ~ ~ )  

Maximum Wave Height 

86. Estimation of the maximum wave height that may occur in a wave 

field is clearly important since it can be used to set an upper limit for 

considerations of run-up or overtopping in engineering design. In the papers 

by Longuet-Higgins (1952) and Thornton and Guza (1983), some consideration is 

given to expected values of the maximum wave height in a field of N waves 

but only cursory discussion of the range of values one might find given a 

single sample of maximum wave height. This is important because it is not 

always possible to obtain more than one wave record from a given site and sea 

state. Hence, it is useful to have some idea of the confidence interval one 

can place on an observed maximum wave height assuming that one knows the 

governing probability law. In this report, a crude confidence measure is 

computed based on the pdf models being tested. It is used to argue that the 

models cannot be distinguished by their estimates of the maximum wave height 

and that all the model estimates of maximum wave height are reasonable. 



87. Longuet-Higgins (1952) gives the derivation of the probability 

density function for the maximum wave height in a sample governed by a 

Rayleigh pdf. The same derivation would apply for a sample governed by any 

well-behaved pdf . Letting pmX(HHrms) symbolize the probability density 

that the maximum wave height a x  normalized by Hrms lies in some small 

range dH/H,,, near H/Hrms , the expression given by Longuet-Higgins (1952) 

can be written in dimensionless form as 

~ r m s  pmax [&] = N P [x] ~ r m s  N-l [~rrns p [XI] ~ r m s  

where 

N = number of wave heights in an observed time series 

P(H/HrmS) = cumulative distribution function of Equation 3 

p(H/Hrms) = governing probability density function 

88. Because Equation 28 governs the distribution of HmaX/Hrms , the 

expected value of the maximum wave height can be found from 

as shown by Longuet-Higgins (1952), and as follows from basic statistical 

operations. One can also find the variance of , here called 

a2[~max/~rms] , using Equation 28 and standard statistical operations. This 

takes the form 

K a x  ~~[k] = SO* [&IZ [~rms p.ax[&]] d[&] - E[c]2 

The standard deviation of the maximum wave height is the square root of 

Equation 30, or u[Kax/Hrms] . 
89. The above statistics can be computed for the models being tested by 

substitution of each model pdf in the above set of equations. Dimensional 

forms for the expected value and standard deviation are found by multiplying 

the dimensionless results by Hrms for all models except the estimated 



Beta-Rayleigh, which must use HrmSte  . The general form for the expected 

maximum wave height is then E [Qax]  = Hrms E [Qax/Hrms] and similarly 

a [Hmax I = Hrms 0 [ %ax/Hrms I 
90. Table 4 shows the results of such computations for each test case 

and each model. The percentage difference of the expected from the observed 

maximum wave height is shown. Also shown is the standard deviation as a 

percentage of the expected Hmax . This latter quantity is important because 

it shows the amount of scatter one would expect from a large ensemble of 

samples of the same sea state, of which each observed maximum wave height in 

Table 4 is just one. That is, one may not get the expected a x  in a single 

random sample, but one might more reasonably expect to be within one standard 

deviation of the expected . Table 4 indicates that with the numbers of 

Table 4 

Com~arison of Measured Maximum Wave Height and Model Expectation 

of Maximum Wave Height - and Its Standard Deviation 

Model Name and Parameter S e t  
Obs . Rayleigh (Hrms ) modified Rayleigh (Hrm,,Hrm ) 

GaX EL%,,] d i f f .  ~[Hrnaxl a/E E [ s a x 1  d i f f .  ~[%, , l  u/E 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 

Date 

14 Sep 86 
2 1  Sep 86 
15  Feb 87 
1 6  Feb 87 
1 6  Feb 87 
16 Feb 87 
17 Feb 87 
17 Feb 87 
18 Feb 87 
18 Feb 87 
1 9  Feb 87 

Time m - - 
0700 1 .28  
1800 0.92 
0100 1.17 
0100 2 . 6 6  
1900 4.00 
2200 4.87 
1600 5 . 7 1  
1900 5.79 
0100 4.15 
0700 4.25 
1900 1 .64  

Mean IXI 5.57 8.17 4 .79  7 .97  

Case Date 

1 14 Sep 86 
2 2 1  Sep 86 
3 15  Feb 87 
4 1 6  Feb 87 
5 1 6  Feb 87 
6 1 6  Feb 87 
7 17 Feb 87 
8 17 Feb 87 
9 1 8  Feb 87 

10 1 8  Feb 87 
11 1 9  Feb 87 

Obs . 
%ax 

m 

1 . 2 8  
0 . 9 2  
1 . 1 7  
2 . 6 6  
4 .00  
4 .87  
5 . 7 1  
5 . 7 9  
4.15 
4.25 
1.64 

Beta-Rayleigh (Hrms,Hrm , d )  

E[%,,I d i f f .  u[H,,,,,I a/E 

Beta-Rayleigh 

EIKax l  d i f f .  
m 96 -- 

1 . 4 1  9 . 5 8  
0.90 -2 .73  
1.25 7 . 0 1  
2 . 9 1  9 . 4 2  
3.90 -2 .70  
4.58 -5 .85 
5 . 5 6  -2 .50 
5 . 1 6  -10 .91  
4 .33  4.22 
3 . 7 8  -10.84 
1 . 7 7  7.90 

Mean / % I  4.77 7.44 6.70 6 .67  



waves observed in these tests and with the particular models being used, the 

variation about the expected h a  of the standard deviation is roughly 6 to 
8 percent. With a few minor exceptions, the observations agree with the model 

expectations within that percentage range. 

91. Typical percentage errors are shown as the mean (over 11 cases) of 

the absolute value of the percentage error at the bottom of the difference 

column for each model. Also shown is the mean of the standard deviations as 

percentages of the expected h a  . Because the model results are typically 

within one standard deviation of the observations, it can be said that the 

models agree adequately with observations. Because the models agree with each 

other to within comparable percentages, one cannot distinguish any model as 

superior to any other (in predicting %,,) from the data used in these tests. 

92. Figure 13 is a correlation plot of expected kaX with observed 
H,,, . The correlation coefficient of each model with the data is shown at 

the top of the figure. The correlation coefficients are reasonably high but 

not as high as for the less extreme characteristic heights of the previous 

section. The correlation coefficients are also all approximately equal, again 

Svmbo l M& C o r r e l a t i o n  

A R a y l e i g h  0 .99078  1 

v M o d i f i e d  R a y l e i g h  (Hrrns,Hrrnq) 0 .988976  
0 B e t a - R a y l e i g h  (Hrrns,Hrmq.d) 0 .991892  
o B e t a - R a y l e i g h  (Hmo,Tp,d)  0 .992179  

0 . 0 0 . 5  1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

measured Hmax (m) 

Figure 13. Correlation plot of observed 
and modeled ha, 



suggest ing t h a t  s c a t t e r  i n  the da ta  precludes d i s t i n c t i o n  of a super ior  model 

(of H,,,) a t  the  s t a t i s t i c a l  l e v e l  of  these t e s t s .  



PART V: CONCLUSION 

93. The Beta-Rayleigh pdf given by Hughes and Borgman (1987) is a new 

and uniquely derived model for wave heights in shallow water. To see if it 

provides improved statistical descriptions of wave properties in diverse wave 

climates, it has been exercised, along with the classic Rayleigh model, to 

obtain results that have been compared with observations at the FRF. To 

establish an objective test, the models were constrained to be formulated 

exactly as published, and, further, no variation of model parameters (to 

improve comparison with data) was allowed. To this end, the tests simulated 

an application by a design engineer who must rely on model resulrs without 

recourse to model or parameter variation. 

94. The Beta-Rayleigh model was used in three forms. One was the 

complete, formal Beta-Rayleigh model in which was imposed the secondary model 

that breaking wave height is equal to water depth (as recommended by Hughes 

and Borgman 1987). A second was the deepwater asymptotic form of the Beta- 

Rayleigh distribution, called a modified Rayleigh model, which depends only on 

root-mean-square and root-mean-quad wave heights as parameters. The third 

form was again the Beta-Rayleigh model, as above, but another secondary model 

posed the two wave height parameters in terms of the frequency domain parame- 

ters KO and Tp as might be necessary if the only field data are smoothed 

processed wave frequency spectra, or spectral estimated derived from numerical 

models. This was referred to as the estimated Beta-Rayleigh model to distin- 

guish it from the formal model. Along with the Rayleigh model, this made a 

total of four models to be tested. 

95. Test data were time series from a Waverider buoy in 8 m of water 

about 1 km offshore. The time series were of 2 hr 16 min duration and 

contained typically 1,000 to 1,500 waves. Diversity of wave climate was 

established by selecting cases classified by energy level as well as broad and 

narrow energy spread in frequency and direction with diversity of directional 

distribution taking dominance. Directional information was obtained from the 

base of processed data from a high resolution, linear array directional wave 

gage, located at the ERE, also in about 8 m of water and slightly north of the 

Waverider buoy. Eleven test cases were selected. At low energy, H,, < 1 m , 

directional spread varied from about 28 to 55 deg. At high energy, the spread 



was more uniform, consistent with the directional wave climate of the FRF, but 

the energy-based wave height was as large as 3.1 m. This was high enough to 

test the effect of finite depth on the wave height distribution through the 

Beta-Rayleigh model. 

96. The first test computed the RMS difference between modeled and 

observed exceedence probability curves. Curiously, the modified Rayleigh 

model showed the least diversion from the observations, with the formal Beta- 

Rayleigh only slightly worse. Both had differences of order 1 to 2 percent of 

the RMS wave height. The Rayleigh model was third, with differences typically 

2 to 3 percent of RMS wave height. The estimated Beta-Rayleigh model had much 

more erratic results, with differences from 1 to 8 percent, typically 

4 percent, of RMS wave height. This is due to the sensitivity of the Beta- 

Rayleigh model to the ratio Hrmq/H,,, and the uncertainty of up to 10 percent 

in estimating these two parameters from a simple model based on H,, , Tp , 
and d . While this aspect of the applied model needs more work in order to 

compare in accuracy with the formal Beta-Rayleigh model, it is quite remark- 

able how small the differences are, given that no parameter fitting was 

employed. 

97. This theme carried into the second test, which was an evaluation of 

the average of a given fraction of the highest waves. Here, again, the 

modified Rayleigh and formal Beta-Rayleigh were the best models overall with 

differences less than 1 percent for the averages all waves and of the highest 

one-third, one-tenth, and one-twentieth waves. The classic Rayleigh model was 

also very good but had differences typically twice those of the first two 

models. The estimated Beta-Rayleigh again suffered from uncertainties in 

estimated H,,, and Hrmq , with errors of 10 to 14 percent not uncommon. 

9 8 .  At high energy and for the average of the highest 1 percent of the 

waves, there was an indication that the formal Beta-Rayleigh model may 

underpredict the true wave field. This may be due to the very simple model 

used for breaking wave height, but it should be investigated further. The 

statistics of high waves at high overall energy is most important for en- 

gineering design. 

99. Curiously, the depth-independent modified Rayleigh curve gave the 

best estimates of these statistics. This suggests that further investigations 

regarding this simple, two-parameter model should also be conducted. This 

would be rather straightforward to do. Whereas the classic Rayleigh model has 



all data collapse (ideally) to the same curve when normalized by H,,, , the 

modified Rayleigh would have the same data collapse to a family of curves for 

which the distinguishing parameter is Hrmq/H,,, . There is no shortage of 

data with which to conduct such a study. 

100. Finally, all the models gave an adequate estimate of the maximum 

wave height to be expected from records of the given duration. As was 

computed, the uncertainties in sampling the maximum wave height made it 

impossible to ascribe superiority to any of the four models based on predic- 

tion of this parameter. 

101. It is concluded, based on these simple tests, that the Beta- 

Rayleigh model, in the form of its deepwater asymptote, is the superior of the 

four models tested. The formal Beta-Rayleigh model is second, followed by the 

classic Rayleigh model and, at some distance behind, the estimated Beta- 

Rayleigh model. It is noted that all of the models behaved well and, depend- 

ing on the level of accuracy required by the engineering designer, any of the 

models give reasonable results. There was no observable distinction in 

observed or modeled wave height distributions based on characteristics of 

frequency-direction energy spectra. All were reasonably close to the one- 

parameter Rayleigh model, which suggests that total energy (of which H,,, is 

a measure) is the overriding parameter of dominance. The fine tuning brought 

about by the modified Rayleigh model is most likely due to modifications of 

the ratio H,,,/H,,, by subtleties of the frequency distribution of energy 

rather than directional effects. This could be investigated with the study 

recommended above. 

102. The following recommendations are made for future studies: 

a. Investigate the effect of filtering the time series from the - 
fully measured spectrum which goes from very low frequencies 
to a Nyquist cutoff to a spectrum confined by predefined wind- 
wave cutoff frequencies, especially in light of the new models 
considered here that have sensitive behavior due to parameters 
which surely are affected by such filtering. 

b. See if an improvement can be made in modeling Beta-Rayleigh - 
parameters in terms of spectral parameters. If these had been 
more finely tuned in the present study, the estimated Beta- 
Rayleigh model would have performed as well as the formal 
Beta-Rayleigh model (by definition). 

c. Examine carefully the various models for breaking wave heights - 
in shallow water to determine the effect in the tail region of 
the formal Beta-Rayleigh model. If all of them cause an 



underestimation of wave height characteristics in shallow 
water outside the breaker zone, the model may have to be 
modified to compensate. This effect could also be inves- 
tigated with longer, better resolved records from just outside 
the breaker zone than were used for model testing by Hughes 
and Borgman (1987). 

d. Perform a proper statistical study of the modified Rayleigh - 
model, as outlined above. This version of the Beta-Rayleigh 
formulation showed remarkable conformation with the observa- 
tions and is deserving of further study. 

103. In closing, it should be noted that this was the most cursory of 

examinations of a new model, intended to show indications rather than strong 

formal conclusions. Especially striking in this study was the close agreement 

of all the models with the data in the absence of any curve fitting or other 

model enhancing activity. Whether this was due to a fortuitous choice of test 

cases, the effect of very long, high-quality time series of sea-surface 

displacement, some artifact of the way the data were filtered or a truly 

improved model of wave statistics remains to be seen. The latter is strongly 

indicated in this brief study, suggesting the evolution of a much-improved 

tool for engineering design. 
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APPENDIX A 

FREQUENCY-DIRECTION SPECTRA FOR TEST CASES 2 THROUGH 11 
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APPENDIX B 

WAVERIDER FREQUENCY SPECTRA FOR TEST CASES 2 THROUGH 11 
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APPENDIX C 

WAVE HEIGHT DISTRIBUTIONS FOR TEST CASES 2 THROUGH 11 
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EL" 
I0 

A 1199 waves observed 
Rayleigh 

-- Modified Rayleigh (using Hrms and Hrmq) 
- - - - -  Beta-Rayleigh (using Hrms. Hrmq and d) 
.......... Beta-Rayleigh (using Hmo, Tp and d) 

Figure C 9 .  Case 10 



Figure C10. Case 11 



APPENDIX D 

WAVE HEIGHT AVERAGE DISTRIBUTIONS FOR TEST CASES 2 THROUGH 11 



Wave Height Averages: Gage 640 
Date: 21 Sep 86 Time: 1800 

Frequency Pass Band: 0.040 Hz < f < 0.350 Hz 
Hmo = 0 . 4 9 1  m d = 7 . 3 6  m E = 0 . 7 5 9  

Hrms = 0 . 3 3 4  m Tp = 1 1 . 1 2  sec e s t .  Hrms = 0 . 3 7 0  m 
Hrmq = 0 . 3 9 6  m d / g ~ p 2  = 0 . 0 0 6 0 6  e s t .  Hrmq = 0 . 4 2 2  m 

x 972 waves obse rved  

Modi f ied  Rayleigh (using Hrms  and  Hrmq) 
B e t a - R a ~ l e i g h  (using Hrms, H rmq  and  d) 
Beta-Rayleigh (using Hmo, Tp and  d) 

fraction, r 

Figure Dl. Case 2 



Wave Height Averages: Gage 640 
Date: 15 Feb 87 Time: 0100 

Frequency Pass Band: 0.040 Hz i f < 0.350 Hz 
Hmo = 0.654 m d = 7.23 m E = 0.564 

H r m s  = 0.438 m Tp = 8.82 s e c  e s t .  Hrms = 0.483 m 
H r m q  = 0.514 m d / g ~ p 2  = 0.00946 e s t .  Hrmq = 0.558 m 

0 

x 1594 waves obse rved  

Beta-Rayleigh (using Hrrns, Hrrnq and  d) 
Beta-Royleigh (using Hmo, Tp and  d) 

I o-~ 10-3 I o-~ 10-1 I 00 
f ract ion, r 

Figure D2. Case 3 



Wave Height Averages: Gage 640 
Date: 16 Feb 87 Time: 0100 

Frequency Pass Band: 0.040 Hz i f < 0.350 HZ 

Hmo = 1.518 m d = 7.35 m E = 0.489 

Hrms  = 1.028 m Tp = 5.44 s e c  e s t .  H rms  = 1.094 m 

Hrmq  = 1.201 m d / c j ~ ~ '  = 0.02525 est. Hrmq  = 1.282 m 
* 

V) 

: < - - 
I 

x 1650 waves observed 

Modi f ied  Rayleigh (using Hrms  and  Hrmq) 
Beta-Rayleigh (using Hrms, H r m q  and  d) 
Beta-Rayleigh (using Hmo, Tp and  d) 

1 0- 10-~ lo-' 1 oO 
fraction, r 

Figure D 3 .  Case 4 



Wave Height Averages: Gage 640 
Date: 16 Feb 87 Time: 1900 

Frequency Pass Band: 0.040 Hz i f i 0.350 Hz 
Hmo = 2.074 m d = 8.26 m E = 0.523 

Hrms = 1.423 m Tp = 6.92 s e c  e s t .  Hrms = 1.505 m 
Hrmq  = 1.669 m d / g ~ p 2  = 0.01759 e s t .  H rmq  = 1.756 m 

u, 

x 1467 waves obse rved  

Modif ied Royleigh (using Hrms  and Hrmq) 
Beta-Rayleigh (using Hrms, H rmq  and  d) 
Beta-Rayleigh (using Hmo,  Tp a n d  d) 

1 o - ~ 1 0- 1 o - ~  lo-' 1 oO 
f ract ion, r 

Figure D4. Case 5 

D6 



Wave Height Averages: Gage 640 
Date: 16 Feb 87 Time: 2200 

Frequency Pass Band: 0.040 Hz < f < 0.350 Hz 

Hmo = 2 . 4 8 9  m d = 8 .  14 m E = 0 . 5 6 3  
H r m s  = 1 . 7 1 0  m T p  = 7 . 3 1  s e c  e s t .  H rms  = 1.811 m 
H r m q  = 2 . 0 2 1  m d / g ~ p 2  = 0 . 0 1 5 5 1  est. Hrmq  = 2 . 1 0 9  m 

VI 

E < - 
L - 
I 

x 1365 waves obse rved  

Modif ied Rayleigh (using H r m s  and  Hrmq) 
Beta-Rayleigh (using Hrms, H r m q  and  d) 
Beta-Royleigh (using Hmo, Tp a n d  d) 

10-4 I 0- lo-= I 00 
fraction. r 

Figure D 5 .  Case 6 



Wave Height Averages: Gage 640 
Date: 17 Feb 87 Time: 1600 

Frequency Pass Band: 0.040 Hz < f < 0.350 Hz 
Hmo = 3 . 2 3 4  m d = 7 . 5 3  m E = 0 . 6 6 9  

Hrms = 2 . 2 0 6  m Tp = 1 1 . 1 2  sec est. Hrms = 2 . 4 3 2  m 
Hrmq = 2 . 6 3 9  m ~ / C J T ~ ~  = 0 . 0 0 6 2 0  e s t .  Hrmq = 2 . 7 8 2  m 

0 

fraction, r 

Figure D 6 .  Case 7 



Wave Height Averages: Gage 640 
Date: 17 Feb 87 Time: 1900 

Frequency Pass Band: 0.040 Hz < f < 0.550 Hz 
Hmo = 2.887 m d = 8.20 m E = 0.659 

Hrms  = 1.960 m Tp = 9.48 s e c  e s t .  H rms  = 2 .133  m 
H r m q  = 2.320 m d / c j ~ ~ '  = 0.00930 e s t .  H rmq  = 2.462 m 

? 

UI 

i < - - 
I 

x 1172 waves obse rved  

Modif ied Rayleigh (using Hrms  and  Hrrnq) 
Beta-Rayleigh (using Hrms,  Hr rnq  a n d  d) 
Beta-Rayleigh (using Hmo, Tp and d) 

I o - ~  10-3 lo-' 10-1 1 00 
f ract ion, r 

Figure D7. Case 8 



Wave Height Averages: Gage 640 
Date: 18 Feb 87 Time: 0100 

Frequency Pass Band: 0.040 Hz < f i 0.350 Hz 
Hmo = 2.417 m d = 7.67 m E = 0.687 

Hrms = 1.638 m Tp = 11.12 s e c  e s t .  H rms  = 1.816 m 
Hrmq  = 1.943 m ~ / C J T ~  = 0.0063 1 e s t .  H r m q  = 2.078 m 

'D 
I I 1 1  1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 , l  

x 1128 waves obse rved  
Rayleigh 
Modi f ied  Rayleigh (using Hrms  and  Hrmq) 

- - - - -  Beta-Rayleigh (using Hrms, H rmq  and  d) 
. . . . . . . . . Beta-Rayleigh (using Hmo, Tp and  d) 

10-4 10-3 1 o - ~  10-1 1 00 
fraction, r 

Figure D 8 .  Case 9 



Wave Height Averages: Gage 640 
Date: 18 Feb 87 Time: 0700 

Frequency Pass Band: 0.040 Hz < f < 0.350 Hz 
Hmo = 2.069 m d  = 8.06 m E = 0.656 

Hrms = 1.399 m Tp = 10.23 s e c  e s t .  Hrms = 1.539 m 
Hrmq = 1.657 m d / c j ~ ~ *  = 0.00784 e s t .  H rmq  = 1.770 m 

9 

Ln 

E < - - 
I 

x 1199 waves obse rved  

Modi f ied  Rayleigh (using Hrms  and  Hrmq) 
Beta-Rayleigh (using Hrms, H rmq  and  d) 
Beta-Rayleigh (using Hmo, Tp a n d  d) 

10-3 I o - ~  10-1 1 00 
fraction, r 

Figure D 9 .  Case 10 



Wave Height Averages: Gage 640 
Date: 19 Feb 87 Time: 1900 

Frequency Pass Band: 0.040 Hz < f < 0.350 Hz 
Hmo = 0.931 m d = 7.73 m E = 0.573 

Hrms = 0.633 m Tp = 8.25 s e c  e s t .  Hrms = 0.683 m 
Hrmq = 0.740 m d / c ~ ~ p ~  = 0.01155 e s t .  Hrmq = 0.792 m 

In 

1446 waves observed 

Modi f ied  Rayleigh (using Hrms  a n d  Hrmq) 
Beta-Rayleigh (using Hrms. Hrrnq a n d  d) 
Beta-Rayleigh (using Hmo, Tp a n d  d) 

lo-* lo-3 to-= lo-' I o0 
fraction, r 

Figure D 1 0 .  Case 11 



APPENDIX E: NOTATION 



APPENDIX E: NOTATION 

Parameter of Beta-Rayleigh pdf 

Parameter of Beta-Rayleigh pdf 

Water depth 

Infinitesimal increment of frequency 

Infinitesimal increment of wave height 

Expected value of quantity in [ ] 

Frequency 

Spectral peak frequency 

Peak frequency of the integrated frequency spectrum 

Specific frequencies 

Gravitational acceleration 

Wave height 

Maximum wave height 

Spectrum-based characteristic wave height 

The nth wave height in a set 

Average of highest fraction r of all wave heights 

Root-mean-quad wave height 

Estimated root-mean-quad wave height 

Root-mean-square wave height 

Estimated root-mean-square wave height 

Specific wave heights 

Average of highest one-third of all wave heights 

Alternate notation for H ( ' / ~ )  

Randomly chosen wave height 

Summing index 



'j 

RMS 

Index of an observed wave height 

Number of wave heights in accumulation bin u 

The nth moment of a frequency spectrum 

Zeroth moment of frequency spectrum 

Second moment of frequency spectrum 

Fourth moment of frequency spectrum 

Index of a set of discrete wave heights 

Number of observed waves in a record 

Probability density function 

Probability density function 

Beta-Rayleigh probability density function 

Probability density function of maximum wave height 

Modified Rayleigh probability density function 

Rayleigh probability density function 

Cumulative probability function 

Rayleigh cumulative probability function 

Probability that expression in [ ] is true 

Exceedence probability 

Exceedence probability estimated from data 

Rayleigh exceedence probability 

Fraction between zero and one 

Fraction of highest observed wave of index j 

Root-mean-square 

Sea-surface variance spectral density 

Spectral peak period 

Peak period of integrated frequency spectrum 

Bin index for histogram of wave heights 



Dummy integration variable 

Parameter of modified Rayleigh pdf 

Gamma function 

Discrete increment of wave height 

Directional spread parameter of integrated direction 
spectrum 

Frequency spectral width parameter 

Standard deviation of quantity in [ ] 

Variance of quantity in [ ] 

Wave direction 

Peak direction of the integrated direction spectrum 
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