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WAVE HEIGHT DISTRIBUTIONS IN MULTIPLE-PEAKED SEAS 

PART I: INTRODUCTION 

1. Successful design of shore protection projects depends critically on 

knowledge of water level variation. Sea surface elevations change because of 

a suite of processes that include tides, storm surge, and wind waves. Wind 

waves do significant amounts of work on coastal boundaries, in general. Of 

particular importance is that water level changes associated with heights of 

wind waves contribute to extremes of beach and structural runup and hence to 

high beach erosion rates or potential for overtopping and flooding behind 

coastal defenses. For engineering design purposes, it is useful to have a 

statistical description of the heights of sea waves so that probabilities can 

be assigned to particular water level extremes. With these probabilities, a 

likelihood of project survival can be estimated. Ideally, probable distribu- 

tions of wave heights in a given sea state can be described with a mathemati- 

cal model. An important problem in coastal engineering is the determination 

of a model that can represent realistic sea states with reasonable fidelity. 

2. One of the earliest and most widely used models is the Rayleigh 

probability density function (pdf), first applied in ocean work by Longuet- 

Higgins (1952). It is a one-parameter model, relying only on specification of 

a root-mean-square (RMS) wave height to allow estimation of the probability 

that a randomly chosen wave height will fall within a small range about a 

specified wave height. As derived by Longuet-Higgins (1952), the Rayleigh pdf 

is valid formally only when an ocean surface can be described by the linear 

sum of a very large number of randomly phased and directed sinusoidal com- 

ponents which conform to a unimodal frequency spectrum wherein all frequencies 

are very nearly (but not quite) equal to some central, characteristic frequen- 

cy. Unfortunately, not all sea states have unimodal, narrow-banded spectra. 

In a rather broad study of naturally occuring sea states, Thompson (1980) 

noted that well over half of his observed spectra were distinctly multimodal. 

This condition means that one can expect wave height distributions to deviate 

to some extent from a Rayleigh distribution. If such a deviation is impor- 

tant, alternative pdf models must be sought. 



3. A comparison of the Rayleigh pdf model with a large set of observa- 

tions is described in the Shore Protection Manual (SPM) (1984). That com- 

parison indicates that if both the number of waves and the RMS wave height 

from a sea surface elevation record are modified to minimize differences 

between model and data, a discrepancy of 10 to 15 percent remains in the low- 

probability but high-wave tails of the distributions. These tails are 

important for estimating extreme wave conditions, so it is important that they 

be modeled correctly. The above result suggests that either the model or the 

data (or both) are not representative of real ocean conditions to within the 

stated percentages. 

4. On the other hand, Longuet-Higgins (1980) cites favorable com- 

parisions of the Rayleigh pdf with data reported by Earle (1975) and 

Forristall (1978). To achieve a favorable comparison, Longuet-Higgins 

renormalized Forristall's data with a spectrally based characteristic wave 

height modified for effects of finite bandwidth. His argument was justified 

in that the RMS wave height is the controlling parameter in a Rayleigh 

distribution and the relationship between RMS wave height and spectrum-based 

wave height can be altered when a narrow-band process is perturbed by low- 

level energy at frequencies away from the peak frequency, as occurs often in 

nature. 

5. Thornton and Guza (1983) extended tests of the Rayleigh pdf to 

include highly nonlinear, actively breaking wave conditions in very shallow 

water. They used data from a number of sensors in water depths as shallow as 

1 m in the breaker zone at Torrey Pines Beach, California. The Rayleigh pdf 

provided very good estimates of wave height statistics in comparison with 

their observations. There was, however, a very slight overprediction of the 

wave population in the high-wave tail of the pdf, somewhat like the result 

given in the SPM (1984). 

6 .  None of the above tests specifically address the problem of height 

distributions under conditions where an energy spectrum is distinctly multi- 

modal. A simple example of such a condition occurs where two narrow-band 

processes coexist but at well-separated frequencies. In nature, such a 

condition can arise where a local, wind-driven sea is generated in the 

presence of low-frequency swell. In general, one would not expect wave 

heights from this scenario necessarily to be Rayleigh distributed because the 

requirement of a unimodal, narrow-band process has been violated. In light of 



Thompson's (1980) findings, it appears that multimodal processes are common in 

nature so that one is obligated to investigate wave height distributions in 

them. 

Purpose of Studv 

7. The intent of the study reported here is to conduct a preliminary 

examination of wave height distributions that arise in multimodal processes. 

Only bimodal processes are considered here in order to keep the investigation 

simple. To maintain maximum control of experiment conditions, time series 

from which to analyze extrema are artificially produced linear sums of 

sinusoidal components. This procedure makes the study somewhat idealized, but 

avoids some of the vagaries associated with field data. Amplitudes and 

frequencies of component wave signals are established through a spectral 

definition. Phases of component signals are selected at random. 

8. Statistical distributions of artificially generated wave heights are 

compared with two distribution models. The first is the Rayleigh model dis- 

cussed above. The second model is the deepwater asymptotic form of the so- 

called Beta-Rayleigh distribution introduced by Hughes and Borgman (1987). 

This second model is a two-parameter function that collapses to the Rayleigh 

model for a specific ratio of its parameters. In general, it is less restric- 

tive than the Rayleigh model (because it has two parameters instead of just 

one) and is called the Modified Rayleigh model. It is included in this 

analysis because an analysis by Long (in preparation) indicates that it 

represents observations better than either the Rayleigh model or the full 

Beta-Rayleigh model for waves having a variety of directional distributions in 

intermediate and shallow water. The hypothesis posed here is that the 

Modified Rayleigh pdf may represent adequately distributions that deviate 

significantly from Rayleigh distributions due to either broad-bandedness or 

multimodality. 

Scope of Investigation 

9. Mathematical descriptions of the models used in this study are given 

in Part 11. Part I11 describes the way in which test data are generated. 

Part IV discusses an analysis of unimodal processes. This analysis is 

necessary because it is not clear how many components distributed over what 

bandwidths are necessary to approximate reasonably a Rayleigh process. Such 



treatment also helps in understanding what happens in spectral filtering of 

time series to eliminate unwanted parts of a signal. The analysis discussed 

in Part V uses the results of Part IV to generate some simple bimodal proces- 

ses where each mode is individually a Rayleigh process. Results can then be 

classified purely by modal separation and ratio of modal energies. Comparison 

of analyzed synthetic time series with model curves then reveals which 

processes are approximately Rayleigh and under which, if any, circumstances 

the Modified Rayleigh model excels. 



PART 11: MODEL DEFINITIONS 

Basic Statistical Notation 

10. The models used here are all defined" basically as probability 

density functions p of specified crest-to-trough wave height H in the form 

p(H) , having dimensions of inverse length. When multiplied by an incremental 

range of height dJ3 , the resulting expression p(H) dH is dimensionless and 

gives the probability that a randomly chosen height fl lies in the range 

between H and H + dH . This relationship is written as 

where Prob means the probability that. 

11. If Equation 1 is integrated over all increments of height between 

zero and some specified height H , one obtains the cumulative distribution 

function (cdf) denoted as P(H) , which is the probability that a randomly 

chosen height fi is less than a specified height H . This expression takes 

the form 

where x is simply the dummy integration variable. In Equation 2, it can be 

seen that P ( a )  = 1 because all wave heights are less than infinitely high. 

One can take the complement of the cumulative probability to obtain the 

exceedence probability function Q(H) , which is the probability that a 

randomly chosen height fi is greater than a specified height H . Formally, 

Q(H) is found from the probability density function by 

* For convenience, symbols and abbreviations are listed in the Notation 
(Appendix A). 



If P(H) is known, Q(H) can also be computed from the result of the follow- 

ing derivation 

12. Conventional statistical definitions allow other properties of a 

wave height distribution to be found from basic probability density functions. 

For instance, the mode, or most probable wave height, is the maximum of 

p(H) . The mean, or average wave height is the integral of the product 

H p(H) over all H . The point here is that all statistical properties of 

interest for a given process can be found once the probability density 

function is known. It is this function, therefore, that is most fundamental 

to define. 

Two-Wave Model 

13. In the analysis described below, synthetic series of points are 

computed by summing a number of sinusoidal components. Aside from the trivial 

case of a single sine wave (where mean, mode, RMS, and all other measures of 

wave height are constant and equal to each other), the simplest sum is of two 

waves of equal amplitudes, very slightly different frequencies, and arbitrary 

initial phases. These two wave trains will beat together, forming the 

familiar grouping pattern where the waves are nearly in phase and then become 

out of phase over relatively long periods, 

14. Statistical properties of this two-wave process were derived by 

Longuet-Higgins (1952). In particular, he found the pdf to be 



where the subscript 2 indicates this two-wave model and Hrms is the RMS wave 

height, determined from a set of observed wave heights through the equation 

Hrms 
n=l 

In Equation 6, N is the number of observed waves and Hn is the height of 

the nth wave. It is useful to treat mathematical models in dimensionless 

form, where practicable. The only parameter in Equation 5 is Hrm, . Hence, 

the pdf can be made dimensionless in the form 

H 
- < &  
Hrms 

H 
- >J7 
Hrms 

The exceedence probability corresponding to this pdf is found by integrating 

Equation 7 in accordance with Equation 3. The result, in dimensionless form, 

is 

2 1 H - sin-l - -  
'n f i  'rms 

15. The two-wave model is useful for testing synthetic data generation. 

When used with two wave trains of arbitrarily different frequencies, synthetic 

wave heights should approximate this statistical distribution, becoming 

asymptotically identical as the two frequencies become nearer to (but not the 

same as) each other. For these conditions to hold, synthetic time series must 

be long enough to include sufficient cycles of the beat period to obtain a 

meaningful sample of wave heights. 

Ravleigh - Model 

16. As described by Longuet-Higgins (1952), the Rayleigh pdf is defined 

by the equation 

I ' rms 



where the subscript R identifies the pdf as Rayleigh. Equation 9 can be 

written in dimensionless form by multiplying both sides by H,,, to form 

17. The cumulative probability function for the Rayleigh distribution 

is found in dimensionless form by integrating Equation 10 with respect to 

H/HrmS over the limits from zero to H/Hrms . The result is 

The Rayleigh exceedence probability function is found by substituting 

Equation 11 in Equation 4 to yield 

Modified Ravleigh - Model 

18. The Modified Rayleigh pdf is the deepwater asymptotic form of the 

Beta-Rayleigh model introduced by Hughes and Borgman (1987). They defined the 

Modified Rayleigh pdf as 

where the subscript MR stands for Modified Rayleigh, r is the gamma 

function (see Abramowitz and Stegun 1970), and a is a parameter defined as 

In Equation 14, cr depends on Hrmq , which stands for root-mean-quad wave 

height and is computed from a set of N observed wave heights H, through 

the expression 



Note that when a = 1 (or Hrmq/H,, = 21i4 from Equation 14), Equation 13 

becomes identical to Equation 10 and the Modified Rayleigh pdf becomes a 

Rayleigh pdf. It should be noted that Hughes and Borgman (1987) defined H,,, 

using a square root instead of the fourth root used here on the right side of 

Equation 15. It makes more sense to use the fourth root since it gives a 

height parameter with dimensions of length instead of length squared. This is 

only a modification of notation and of the basic model. One would simply 

use the square root of the H,,, in Equation 14 above. 

19. To find the cumulative distribution function of the Modified 

Rayleigh model, one must integrate the pdf numerically. For computations used 

in this study, integration was done using Simpson's rule in double precision 

with integration steps of 0.001 in H/Hr,, . 
20. Examination of Equations 13 and 14 reveals that the shape of the 

dimensionless pdf depends only on one parameter, the ratio Hrmq/Hrms . 
Figure 1 shows a variety of Modified Rayleigh distributions found for select 

values of H q / H m  . The bold curve in Figure 1 is the Rayleigh pdf to which 

the Modified Rayleigh pdf degenerates when Hrmq/Hrms = 21i4 . For complete- 

ness, the two-wave pdf is also shown in Figure 1. 

Additional Parameters 

21. Where spectra are used for synthetic time series generation, some 

additional parameters can be defined. These parameters are based solely on 

spectral shape. Perhaps the most frequently used spectral scale of wave 

height is denoted , and is defined by 

In Equation 16, m, is the spectral zeroth moment. The more general nth 

spectral moment m, is defined by 

where f is frequency; fl and f2 are, respectively, low and high 

frequency bounds of the spectral definition; and S is signal variance 

spectral density. 
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Figure 1. Examples of model curves 

22. Ideally, fl = 0 and f2 = .o , but in practice, the two frequen- 

cies are bound to less diverse values. Where purely synthetic time series are 

used, a low frequency of fl = 0 is realizable, but it results only in a 

constant offset of the signal that would normally be removed in subsequent 

wave height analysis. For computer-generated discrete time series, the lowest 

practical frequency f l  is that which allows enough cycles that wave heights 

extracted from the time series include the effects of these low-frequency 

waves . 



23. The constraint on the upper frequency f2 is related to the time 

step At used to simulate a time series. If a frequency is too high, there 

will be too few time steps per wave. The probability will then be small that 

the crests and troughs of these waves will be represented in the discrete 

sample. For practical purposes, about 20 time steps per wave is a reasonable 

sampling. A crest or trough is then always within one-fortieth of a wave 

period of some discrete time step. The fractional error in crest or trough 

estimation is then the ratio of the cosine of one-fortieth of a wave cycle 

(9 deg) to the cosine of zero degrees. This ratio is about 0.988, correspond- 

ing to an error of about 1.2 percent in crest elevation estimation or about 

2.4 percent overall. A frequency upper limit of 20 time steps then requires 

f, 5 1/(20 At) . 
24. Another parameter of use is one that gives a measure of spectral 

width. A wave height distribution is theoretically Rayleigh if the cor- 

responding frequency spectrum is narrow-banded. A measure of such spectral 

width has been given by Cartwright and Longuet-Higgins (1956) as the parameter 

E defined by 

where m, , m, , and m4 are determined through Equation 17. A small E 

indicates a narrow spectrum, and an E near 1 indicates a broad spectrum. 

25. Further parameters associated with spectral definitions are given 

in Part 111, wherein test data generation is described. Parameters associated 

with averages of particular subsets of wave heights (for example, average of 

the highest one-third) are defined in Part IV, where model test criteria are 

described. 



PART 111: TEST DATA GENERATION 

26. In this study, wave height distributions are extracted from 

synthetic time series that have specific spectral definitions in the frequency 

domain. A very efficient computational scheme for synthesizing a time series 

from spectra is by way of inverse Fourier transforms. In this chapter, this 

technique and the nature of the spectra used in this study are described. 

Inverse Fourier Transform Technique 

27. Following the description by Bendat and Piersol (1971), a time 

series of N water surface elevations or an artificial representation thereof 

can be represented by the notation xn = x(tn) = x[(n - l)At] , for n = 1, 2, 

3, . N - 1, N where x, is the nth discrete sample of a continuous 

function x(t) and tn is the nth discrete increment of time At after an 

initial time of zero for the first sample (n = 1). A second, independent, 

N-point time series can be represented by the notation y, = y(t,) 

= y[(n - l)At] , for n = 1, 2, . . . ,  N . Each of these time series can be 

subjected to a discrete Fourier transformation (DFT). For time series x, , 

the kth element of the DFT is denoted by X, , and the whole set is defined by 

For the second time series, DFT elements are denoted by Yk and are defined 

by 

28. Because each time series represents a piecewise continuous func- 

tion, each can also be represented as a Fourier series of points. The first 

time series can thus be written 

xn = Nf +Ixk cos 
k=l N 

[2n(k - - 

+ Bxk sin n = 1, 2, . . . N - 
N 2 



where Axk and Bxk are the kth Fourier cosine and sine coefficients, respec- 

tively, of time series xn . Similarly, the second time series can be 

expressed in the form 

+ By, sin "I) n = 1, 2, . . N - 
' 2 (22) 

where Pqk and Byk are the kth Fourier cosine and sine coefficients, respec- 

tively, of time series yn . The Fourier coefficients can be found from the 

time series points through the formulae 

Ax, = f xn cos I k = 2, 3, . . . N - 
N n = ~  [2a(k - N - 2 

for time series xn , and the formulae 

2 
Byk = - j: yn sin 

2n(k - l)(n - 1) I k = 2, 3, . . . N - 
N n = ~  N ' 2  

for time series y, . 



29. Noting that the real part of Equation 19 is identical to the 

summation term in Equation 24 and that the imaginary part of Equation 19 is 

identical to minus the summation term in Equation 26, it is clear that 

1 A,, - i B,, = N X, 

and 

Similarly, 

and 

for time series y, . These relationships show how the Fourier series 

coefficients and Fourier transform components are related. 

30. It is also useful to note that the Fourier series of Equation 21 

can be written as 

where the cosine and sine amplitudes Axk and Bxk , respectively, of 

Equation 21 are related to the modulus Cxk and phase 4, of Equation 35 by 

and 

and 



These relationships allow definition of an individual wave component in terms 

of a wave amplitude Cxk and initial phase 4 . These relationships are 

useful when defining a wave field from a spectrum as is done below. 

31. The spectrum or variance spectral density Sxk of the kth frequency 

component of time series x, is found by multiplying Equation 32 by its 

complex conjugate, dividing the result by 2, and dividing again by the 

frequency bandwidth represented by element k . This frequency bandwidth Af 

is defined as 

1 
Af = - 

NAt 

The set of mathematical operations outlined above yields 

where the asterisk (*) denotes complex conjugate. In the above derivation, 

Equation 38 has been used in the step from Equation 41b to Equation 41c. 

Equation 41c is essentially the definition of spectral density since the 

variance of a sinusiodal wave of amplitude Cxk is :c$~ , and the variance 
density is the variance divided by the frequency bandwidth represented by the 

single sinusiodal wave. Equation 41c also shows how the kth spectral element 

relates to the Fourier series representation of the process. Equation 41d 

comes about by using the right side instead of the left side of Equation 32 in 

Equation 41a. Equation 41d shows how the spectral density of element k is 

related to element k of the DFT. 

32. Clearly, if one knows the spectral density SXk , the time step 

At , and the number of time steps N in a time series, the resolution 



frequency bandwidth can be determined from Equation 40, and wave amplitude 

CXk can be found by solving Equation 41c to form 

or, if Equation 40 is used to define Af , 

The frequency of element k is the (k - l)th increment of the resolution 

frequency bandwidth Af in the form 

or, if Equation 40 is used to define Af , 

fk = 
(k - 1) 
NAt 

The value of the independent variable time at the nth time step of both time 

series x, and y, is 

Finally, the initial phase is a uniform random deviate in the range from 0 to 

2n radians. This definition conforms to the assumption of a Gaussian random 

process for natural ocean waves. Notation for random phase of the kth wave 

component is 

where Uxk[O,l] represents a uniform random deviate in the range 0 to 1, and, 

in this example, one associated with time series x, . A variable of this 

type can be obtained routinely from a computer-based random number generator. 

33. With the definitions of Equations 43, 45, 46, and 47, the contribu- 

tion to a time series at the nth time step from the kth frequency component is 



Equation 48a is recognized as the kth contribution of the Fourier series of 

y, given by Equation 35. The Fourier coefficients Axk and Bxk of Equa- 

tions 36 and 37, respectively, then become 

Using these Fourier coefficients in Equations 32 and solving for Xk yields 

as an expression for the kth element of the DFT of time series x, . Equa- 

tion 51 can be written in more abbreviated form by combining terms and using 

Euler notation, which results in 

A  similar set of steps can be created for time series y, . If the kth 

component of the frequency spectrum of y, is Syk and its kth initial phase 

is 2 ~ U , ~ [ 0 , 1 ]  , the corresponding DFT element Yk is given by 

3 4 .  By taking advantage of complex notation and certain properties of 

DFT's, an efficient means of computing multiple time series is achieved. If 

the DFT for time series y, (Equation 2 0 )  is multiplied by i and added to 

the DFT for time series y, (Equation 19) and the kth element of the result 

is denoted as Zk , then 



where Equations 3 2  and 3 4  were used to obtain the last line. The complex 

conjugate of element N - k + 2  of Equation 5 4  has the form 

where use is made of the identity ei[2"N(n-1)/N1 = 1 . Again using Equations 32 

and 3 4 ,  Equation 5 5  can be written 

3 5 .  Adding Equations 54 and 56 and multiplying by 1/N yields an 

expression for just the Fourier coefficients of time series xn , i.e., 

Subtracting Equation 56 from Equation 5 4  and multiplying by -i/N yields an 

expression for just the Fourier coefficients of time series yn in the form 

Equations 57 and 58 can be inverted to recover Equation 54 representing Zk 

for k = 1, 2, . . . ,  N/2 and the complex conjugate of Equation 56 representing 

Zk for k = N/2 + 2 ,  N/2 + 3 ,  . . . ,  N . The Axk and Bxk for time series 

x, are assigned values from user-defined spectral densities S,, and a set 

of random phases 27rUxk[0,1] following Equations 49 and 50. A similar set of 

relations defines the I$, and By, for time series yn . With these 



definitions made, the complex DFT Z, can be inverse transformed to recover a 

complex array for which the real part is the time series x, and the imagi- 

nary part is the second time series y, . 
36. In summary, two time series can be synthesized from two distinct 

spectral density definitions using a single algorithm. Complex numbers are 

formed from the Fourier coefficients of the time series. For one time series, 

the complex Fourier coefficients are formed from 

A,, - iBxk = 

and for th.e other time series, the Fourier coefficients are 

Equations 59 and 60 are then combined to define the DFT of the complex sum of 

the two time series in the form 

and 

with Z, = ZN12+, = 0 arbitrarily assigned without loss of generality in the 

present application for the mean values and Nyquist frequency values, respec- 

tively. Finally, the complex array Z, (k = 1, 2, . . . ,  N) is inverse 

Fourier transformed to recover the time series through the sum 

In Equation 63, the real part is the time series x, and the imaginary part 

is the time series y, . Where a collection of such time series (or their 

properties) is useful for statistical purposes, the above algorithm can be 

applied repeatedly, with the procedure providing two new time series in each 

application. Computer techniques known as Fast Fourier Transforms enable sums 

like those on the right sides of Equations 19, 20, and 63 to be computed very 



rapidly. In this way, statistically stable data sets can be synthesized with 

reasonable efficiency. 

Unimodal Data 

37. In using synthetic data as described above, some assurance must be 

gained that the procedure used replicates, in fact, the process it intends to 

synthesize. In the present case, a narrow-banded process containing a large 

number of spectral lines should yield a Rayleigh distribution of wave heights. 

This distribution is the result predicted by Longuet-Higgins (1952). Although 

ideally a Rayleigh process contains an infinite number of spectral lines, it 

is a practical impossibility to synthesize such a process using discrete 

computational techniques. However, it should be possible to approximate the 

process if a sufficiently large number of lines is used. Thus, an important 

question in the current context is how many lines it takes for a spectrum of a 

given width to approximate closely a Rayleigh process. 

38. A second question is related to the first. That question is how 

narrow a spectrum must be before a Rayleigh process is realized. The deriva- 

tion given by Longuet-Higgins (1952) simply states that the process must have 

a narrow spectrum, but does not give a practical definition of narrowness. 

3 9 .  Part of the investigation described here is devoted to examining 

these two questions. The idea is to find what is necessary to simulate a 

Rayleigh process in a unimodal spectrum and then combine several of these 

independently Rayleigh processes to investigate wave height distributions from 

processes with multimodal spectra. The approach for this part is to generate 

time series from band-limited white spectra having variable bandwidths and 

different numbers of spectral lines, with each spectral component being 

assigned a random initial phase. Due to the random phasing process, a given 

sample time series can have a highly variable maximum wave height depending on 

how nearly all the components are in phase at some point in the synthetic time 

series. To get a better estimate of a characteristic maximum height, as well 

as other high-wave statistics, an average of the wave height distributions of 

several time series, having the same generating parameters (except for 

phasing) and truncated at the same number of waves, is computed. This average 

is compared with both the Rayleigh model, Equations 10 and 12 for the pdf and 

exceedence curves, respectively, and the Modified Rayleigh model, Equation 13 



for the pdf and its intgral using Equation 4 for the exceedence curve. The 

fundamental parameters of these time series averages are the defining spectral 

widths and numbers of components. 

40. Mathematically, the spectra are defined by first specifying the 

number of time steps N in a time series and a time step dt between time 

steps. By Equation 40, the basic frequency increment of the discrete spectrum 

is df = l/Ndt so that the nth frequency of the spectrum is f, = (n-1)df . 
It then remains to assign variance densities to each of the N/2 + 1 frequen- 

cy bands at or below the Nyquist frequency. For band-limited white spectra, 

four more variables are needed: a total variance, a reference center frequen- 

cy, a bandwidth, and a number of spectral lines to which to assign energy. In 

all of the tests discussed here, the total variance is constrained to be 

equivalent to 0.25 m2 . This yields an Hm, = 2.0 m , which is a convenient 

number of order one for computational purposes, but is otherwise unimportant 

as all results are normalized with the computed RMS upcrossing wave height 

Hrms 

41. The variables in the problem are then the center frequency f, , 

the overall bandwidth Af , and the number N of spectral lines within Af 

which are assigned a finite variance. The bandwidth is normalized by the 

center frequency to take the form Af/fc as a parameter. The bandwidth is 

then found from the product fceAf/f, . The low-frequency bound of this band 

is the discrete raw frequency band nearest to f, - Af/2 . The high-frequency 

bound is the discrete frequency band nearest to f, + Af/2 . 
42. Assignment of the number of bands within the bounding frequencies 

is determined by specifying the interval between raw frequency increments to 

which finite variance is assigned. If every line is of finite variance, the 

number of lines is N = Af/df . If every other line has finite variance (the 

intervening lines having zero variance), the number of lines is N = Af/2df . 

In this case, the effective overall bandwidth of the spectrum is still the 

same Af , but it is represented with only half as many lines, as if the 

resolution bandwidth is twice as wide. If the variance in every other band of 

the second case is twice the variance in each band of the first case, the 

total energy represented by the spectrum remains the same. This same 

procedure can be followed by assigning finite variance to every third line, 

every fourth line, and so on until as few as two lines remain to represent the 

spectrum. Two lines is clearly a lower limit for the number of lines with 



which to represent a spectrum because the pdf is no longer even approximately 

Rayleigh, as derived by Longuet-Higgins (1952), as expressed in Equation 7, 

and as shown in Figure 1. Figure 2 illustrates the effect of varying the 

number of lines with which to define a band-limited white spectrum. It also 

shows the equivalent bandwidths and spectral densities of a "continuous" 

spectrum having the reduced number of lines and yet retaining the same overall 

bandwidth. 

43. For the unimodal spectra, both the overall bandwidth Af and the 

number of lines N within this band are varied within the limits imposed by 

time series of finite length. In all tests, time series lengths are 

N = 65,536 points. With a time step of dt = 0.5 sec , this represents a 

record of 32,768 sec or 9 hr, 6 min, 8 sec, a record much longer than is 

normally obtained in nature. In all cases, the center frequency is kept at 

f, = 0.1 Hz , corresponding to 10-sec waves. Hence, each simulation contains 

in excess of 3,000 waves, enough with which to compute some reasonably concise 

statistics. 

44. For each simulation, 20 runs were made to establish a mean charac- 

teristic pdf. With 20 samples, other statistics can be computed as well. For 

the present tests, a standard deviation for the exceedence curve is also 

computed. Since the number of waves is not exactly constant in the full 

length of the time series, the run results are scanned to find the case with 

the fewest waves and all other runs are truncated in time at this same number 

of waves. In this way, all 20 runs for each case have the same number of 

waves. When wave heights are placed in order of ascending height, there are 

then 20 samples at exactly the same discrete exceedence probability estimate. 

Empirical Probability Estimates 

45. A set of N discrete wave heights H, can be used to estimate the 

pdf of the governing process. If all H, are normalized by H,,, (defined in 

Equation 6), the number J, which fall in the range uAH/H,,, to 

(u+l)AH/H,, can be counted and divided by N to compute the fraction (or 

estimated probability) of this occurance. When this fraction is divided by 

AH , a wave height range arbitrarily chosen by the investigator, and 

multiplied by H,,, to make the result dimensionless, the result is an 

estimate of the normalized pdf for that data set. 
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46. If more than one set of wave heights is available, a better 

estimate of the pdf of the underlying process is found from the average number 
- 
J, of contributions to each range bin. Since Hrms is unlikely to vary much 

from run to run, the effect is simply to increase the sample population of 

wave heights. Such an increase gives a better pdf estimate because there are 

more degrees of freedom for the population of each range bin. 

47. The same set of normalized wave heights Hn/HrmS can be used to 

estimate the cumulative or exceedence probability functions. If the H,/Hrm, 

are ordered from smallest to largest, the probability that any of the wave 

heights is less than the height of wave n is the fraction n/(N + 1) . This 

computation provides an estimate of the cumulative distribution function. The 

data estimate of exceedence probability QD(H,/Hrms) is one minus the cumula- 

tive distribution at height n , or 

48. A third set of statistics that are of use is the average of the 

highest fraction r of an observed set of waves, denoted H(~) . One of the 

most commonly cited members of this group is the average of the highest one- 

third of the waves in a given sample. This is given the symbol 

following the notation of Longuet-Higgins (1952). Note that the SPM (1984) 

and some other references use the symbol Hl13 , instead. From the set of 

normalized, ordered wave heights Hn/Hrm, , the computation of the jth dis- 

crete, monotonically increasing fractlion rj is given by 

and the average of that fraction of the highest waves is 

The result of Equation 66 can be interpolated if a particular desired fraction 

does not fall on one of the discrete fractions r j  . 
49. For the Rayleigh and Modified Rayleigh models being tested here, 

the corresponding average heights are found following the derivation given by 



Longuet-Higgins (1952). The fraction r of waves that are larger than a 

given value of H/H,, is the exceedence probability for that H/HrmS . The 

average value of waves higher than a given H/H,,, is the integral from that 

H/H,, to infinity of the normalized heights weighted by the pdf and divided 

by the area over the same limits under the weighting function (i.e., the pdf). 

The general forms for r and H / H ~  are 

The terms in square brackets are the dimensionless pdf models under considera- 

tion (Equation 10 for the Rayleigh model or Equation 13 for the Modified 

Rayleigh model). Where the above integrals have no simple analytic form, 

numerical methods are used for evaluation. The simple trapezoid rule with 

increments of AH/H,, = 0.001 and an upper limit of integration of 6.0 (in 

place of infinity) has been found to yield quite accurate results. 

Bimodal Test Data Generation 

50. The above definitions are used to establish criteria for simulating 

a Rayleigh process using discrete inverse Fourier transform techniques to 

produce time series from unimodal, band-limited, white spectra having given 

bandwidths and numbers of component waves. Once such criteria are estab- 

lished, a bimodal spectrum can be constructed of two unimodal spectra, each of 

which yields a Rayleigh wave height distribution by itself. Wave height 

distributions derived from such bimodal spectra can then be compared with test 

models to determine the quality of representation. 

51. Since each mode in such a bimodal spectrum yields a Rayleigh wave 

height distribution by itself, the details of the mode structure (bandwidth 

and number of component wave trains) are no longer important. The two primary 

variables in bimodal tests are a measure of modal separation in the frequency 

domain and the relative amount of energy in one mode compared with the other. 

Modal separation is important because the two modes could be very close to 

each other and so just yield a slightly wider unimodal spectrum (and 



corresponding wave height distribution). If the modes are well separated, 

low- and high-frequency waves are present at the same time. Under these 

conditions, one would expect a rather diverse character to a wave height 

distribution. 

5 2 .  However, if the energy (i.e., variance) in one mode is much less 

than in the other, the high-energy mode would be expected to dominate, and the 

process should become asymptotically Rayleigh. Hence, the ratio of energy in 

one mode relative to that in the other is important. It seems clear that the 

greatest deviations would occur when the two modes are of approximately equal 

energy so that neither clearly dominates. 

5 3 .  To characterize modal separation, a dimensionless difference 

between the modal center frequencies is used. If f ,  is the center fre- 

quency of the first, lower frequency mode and f is the center frequency 

of the other mode, a separation parameter can be defined as 

modal separation = 
fc,2 - fc,l 

;(fc,2 + fc,l) 

It can be as small as zero (if the two modal center frequencies are co- 

located) or as large as 2  (if fc,, << fc,, ) . 
5 4 .  To characterize relative energy, the ratio of the variance in the 

second mode to the variance in the first mode is used. Since four times the 

square root of the variance in a spectral mode can be identified as an H,, 

for that mode, the square of the ratio , 2 / o ,  can be used to characterize 

relative energy, i.e'., 

relative energy = [el 
Relative energy can vary from zero to infinity, but for the practical cases 

considered here, the range is from 0 . 2 5  to 4 . 0 .  



PART IV: UNIMODAL TESTS 

Test Conditions 

55. A total of 53 cases were examined for the unimodal tests. Table 1 

lists the parameters used in the tests. The primary variables were the 

bandwidth Af and the number of spectral lines N . In all cases, the center 

frequency was f, = 0.1 Hz , the characteristic spectrum-based wave height was 

H,, = 2.0 m , and the number of runs for obtaining statistical averages was 

20. Note that spectral component wave amplitudes were found by dividing total 

signal variance (equal to the square of ;H,,) evenly among all N compo- 

nents. Note also that there is an upper limit to the number of component 

waves for a given spectral bandwidth because of the finite raw bandwidth 

imposed by the discrete Fourier technique used to create the time series. 

Hence, the narrowest case (Af/f, = 0.05) was limited to 164 bands, but the 

broadest case (Af/f, = 1.6) had 5,243 bands. 

56. Test criteria were the percentage differences of , H('/") , 
H(1/3) , and H('/') from the synthetic results with those from the test 

models. Computations followed the pattern shown here for the comparison of 

synthetic data with the Rayleigh model estimate of the average of the highest 

1 percent of waves 

~i1/100) - Hil/lOO) 

% Difference = cl,loo, X 100% 
HR 

Comparison with the Modified Rayleigh model entails replacing with 

HkoO) in Equation 71. Replacement of the highest 1-percent averages with the 

highest 10-percent averages ~6"'~) , , and Hg1'O) allows comparison 

among data and models for this statistic, and so on. 

Test Results 

57. Results of such comparisons are shown in Figures 3 and 4. Figure 3 

shows synthetic data results compared with Rayleigh model statistics for the 

four wave height averages mentioned above. Percentage differences are shown 

as displacements on ordinate axes. Abscissa displacements are the numbers of 

component waves N . Symbols denote synthetic data of constant Af/f, . The 



Table 1 

Parameters* of Unimodal Test Data 

Group 1: Af/f, = 0.05 Group 2 :  Af/f, = 0.10 Grouv 3: Af/fc = 0.20 
Case # # of Lines Case # # of Lines Case # # of Lines 

Group 4: Af/f, = 0.40 Group 5: Af/f, = 0.80 Grouv 6: Af/fc = 1.60 
Case # # of Lines Case # # of Lines Case # # of Lines 

* For all cases: f, = 0.1 Hz , &, = 2.0 m , 20 runs averaged for each case 

inset in the upper part of Figure 3 shows the correspondence between Af/f, 

and the spectral width parameter E of Cartwright and Longuet-Higgins (1956), 

defined in Equation 18. Figure 4 shows the same pattern of comparison but for 

the Modified Rayleigh model vice the Rayleigh model. 

58. Figure 3 reveals some interesting characteristics of synthetic 

data. Perhaps the most obvious is that the smaller the fraction r in the 

average H(=) , the more wave components are required to approximate a 

Rayleigh distribution. For the average heights H(~/') , the curves are 

relatively flat for all numbers of component lines. The same is true for 

H"/~) . For Hfl"O) , it appears that about 20 component waves are necessary 

to differ from a Rayleigh H ( ~ / ~ ~ )  by less than 10 percent. For H ( ~ ' ~ ~ ~ )  , it 
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takes about 100 component waves to stay within 10 percent of a Rayleigh 

H(l/loo) 

59. The reason for this behavior can be seen in the sequence of 

Figures 5, 6, 7, and 8, which show the synthetic, Rayleigh, and Modified 

Rayleigh probability density and exceedence functions for the cases with f, 

= 0.1 Hz , Af/f, = 0.1 , and N = 2, 3, 10, and 328 component waves, respec- 

tively. Because the synthetic curves are averages of 20 different runs, 

standard deviations could also be computed and plotted. Standard deviations 

are shown as dashed lines in the exceedence graphs. Figure 5 represents the 

case of two waves. For this case, the synthetic pdf in the upper part of 

Figure 5 looks very much like the two-wave model pdf shown in Figure 1. Also, 

the standard deviation is very small. This result is as it should be since 

the two-wave case has an exact solution (Equation 7) and the synthetic results 

reflect this solution very well. 

60. When a third wave train is added, the problem becomes more compli- 

cated, having no analytic solution. The result for a single run depends 

strongly on the initial phases of the three component waves. If all three are 

nearly in phase at some point in the time series, the maximum wave heights 

will be larger than if the waves are not nearly in phase at any point in the 

time series. Since initial phases vary from run to run, the variation in wave 

height distribution is suggested by the standard deviation of the set of runs. 

This is shown in Figure 6 as the dashed lines on either side of the average 

exceedence curve in the lower part of the figure. The mean of the 20 runs is 

higher, however, than the mean of the two-wave results of Figure 5. This 

trend continues when the number of component waves increases to 10, as shown 

in Figure 7. Figure 7 also shows that the smaller waves begin to conform to 

the Rayleigh model more than the two-wave or three-wave cases. This is the 

result summarized in Figure 3. At the point where there are 10 component 

waves in Figure 3, averages over the highest 1/10, 1/3, and all the waves are 

very close to the Rayleigh values. However, the H ( ~ ' ~ ~ ~ )  still differs 

substantially from the Rayleigh curve, evidently due to the limited number of 

wave components. 

61. In Figure 8, the synthetic data are composed of 328 wave trains and 

appears to conform to the Rayleigh curve over the whole plotted domain. 

Presumably, if a longer time series had been generated, there would be a 

region of limiting heights at some point on the high-wave tail. This effect 
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is suggested in Figure 8 by the widely spaced and nearly vertical standard 

deviation curves at high H/H,,, and by extrapolation of the results shown in 

Figures 5 ,  6, and 7 .  However, this has not affected adversely the statistics 

chosen for the present tests. 

6 2 .  A second observation of the results shown in Figure 3 is that 

beyond a certain bulk spectral bandwidth, the parameters do not appear to 

approach Rayleigh parameters no matter how many component waves are used in 

the spectral definition. This is most clear for the widest case, 

Af/f, = 1 . 6 0  , but is also slightly evident in the next-to-widest case 

Af/f, = 0 . 8 0  . It is notable that even the mean wave height H(ltl) and the 

average of the highest one-third waves H('I3) also show some effect of 

spectral broadening. One of the most extreme examples of this is shown in 

Figure 9. Though there are over 5 , 0 0 0  component wave trains, the mean curve 

deviates everywhere from the Rayleigh curve and the deviation is significant 

at least at the level of the standard deviation of the synthetic data. 

6 3 .  Also shown in Figure 9 are the Modified Rayleigh pdf and exceedence 

curves. These curves clearly represent the synthetic data better than the 

Rayleigh curves. This is evident in the broader sense in Figure 4, where all 

four measures of comparison are much closer than the Rayleigh compartson of 

Figure 3 as long as enough component wave trains are present. This result 

suggests that the Modified Rayleigh curve is a better model for broad spectra 

if the added parameter H,,, can be determined directly from the spectra. It 

is not yet evident that this determination can be made. 

6 4 .  These tests reveal certain properties about unimodal, band-limited, 

white spectra and the probable wave height distributions contained in the 

corresponding time series. If the spectra contain in excess of 100 conponent 

wave trains and do not have a width such that Af/f, is greater than about 

0 . 4 ,  the resulting wave height distributions will conform very nearly to the 

Rayleigh model. 

Implications for Spectral Filtering 

6 5 .  A common way to remove unwanted noise or extraneous signal from a 

time series is by spectral filtering. In this method, a time series is 

Fourier transformed to obtain a spectrum after which energy in specified 

frequency bands is either reduced or eliminated according to the filter 





characteristics. The filtered spectrum is then inverse Fourier transformed to 

generate a filtered time series. 

66. A clear danger in this method is that the possibility arises to 

remove enough of the spectrum that insufficient energy-containing spectral 

lines remain to recover enough of the wave height distribution to have 

reasonably good statistics. This is especially true where the parent time 

series is short so that the raw spectral frequency bands are wide. Figure 3 

indicates that, for spectra that are not too broad to begin with, at least 

40 lines must remain to obtain H('/") to within about 2 percent and at least 

150 lines must remain to obtain H ( ~ / ~ ~ ~ )  to within about 5 percent. 

67. There may be advantages to spectral filtering as well. If there is 

truly noise in the time series such that the spectrum becomes broad in its 

presence, then filtering can remove the noise and make the spectrum narrower. 

If such a filter reduces spectral width from an equivalent Af/f, of order 

1.0 to something less than about 0.5, a clear improvement in all statistics is 

suggested by Figure 3. 



PART V: BIMODAL TESTS 

Test Conditions 

68. A total of 55 cases have been examined for the bimodal tests. 

Table 2 lists the parameters used in the tests. The primary variables are 

modal separation, as defined by Equation 69, and relative modal energy, as 

defined by Equation 70. Each mode has been constrained to a width of 0.01 Hz 

by adjusting the parameter Af/f, along with the parameter f, so that their 

product yields the desired bandwidth. With a time step At = 0.5 sec and the 

time series length of 65,536 points, the raw spectral bandwidth is about 

0.0000305 Hz. With this raw bandwidth, a modal bandwidth of 0.01 Hz contains 

about 328 spectral lines. Each mode is independently a Rayleigh process, as 

determined from the results of Part IV. 

69. Modal separation has been allowed to vary from zero to about 1.33. 

At zero separation, the two modes coincide on the frequency axis. In this 

case, the resulting process should be Rayleigh for all values of relative 

modal energy because the effective spectrum is unimodal and narrow, and 

contains enough spectral lines. It is no longer a white spectrum, however, 

because there are now two randomly phased waves at each frequency. Two waves 

at the same frequency can interfere constructively or destructively, depending 

on their relative phases, so that the resulting wave amplitude can vary from 

zero (destructive interference with waves of equal amplitude) to the sum of 

the two component wave amplitudes (constructive interference with the waves in 

phase). Corresponding wave energy will vary from zero to a number proportion- 

al to the square of the sum of the two component wave amplitudes. In the 

derivation by Longuet-Higgins (1952), there was no constraint on the distribu- 

tion of energy within the narrow band process. Hence, coincident modes in the 

test spectra are expected to yield wave height distributions that follow the 

Rayleigh model. 

70. The largest modal separation has one mode center frequency at 

0.05 Hz and the other at 0.25 Hz. These frequencies are near the limits of 

the overall band normally associated with wind waves, corresponding to wave 

periods of 20 and 4 sec, respectively. This separation is considered to be a 

practical limit for wind waves. Such a case might occur where young or short- 

fetch waves are riding on longer, swell-like waves. 



Table 2 

Parameters* of Bimodal Test Data 

Mode 1 Mode 2 Mode 1 Mode 2 
fc (Hz) A f / f 2  gem Af/f2 ~c-L&Ll ALL‘&.- .&m is&- 

111 0.100 0.100 0.100 0.1000 
112 0 .095  0.105 0 .105  0.0950 
113 0.090 0 .111  0 ,110  0.0909 
114 0 .085  0 .118  0.115 0.0870 
115 0.080 0 .125  0.120 0.0833 
116 0.090 0.143 0.130 0.0769 
117 0.060 0.169 0.140 0.0914 
118 0.050 0.200 0.150 0.0667 
119 0,050 0.200 0.160 0.0625 
120 0 ,500  0.200 0 .200  0.0500 
121  0.500 0.200 0.250 0.0400 

% o , l  = 1.789 m kOp2 = 0.894 m 

* 20 runs averaged for each case. 

71. Variation of relative amounts of energy so that one or the other of 

the modes dominates suggests what happens to wave height distributions in such 

situations as high-energy short waves on low-level swell or the initial stages 

of a growing sea in the presence of an active swell. Five levels of relative 

energy have been used in the present tests. The ratio varies from 0.25 to 4.0 

following a geometric progression. Clearly, if the ratio approaches zero or 

infinity, then one or the other of the two modes will become the only energy 

containing mode so that the process will revert to unimodal behavior. It is 

expected that the most interesting cases will be those with energy ratios of 

order unity 

72. Test criteria in this set of tests are the same as those in the 

unimodal tests. Wave height averages H ( ~ ' ~ ~ ~ )  , H ( ~ / ~ ~ )  , H ( ~ / ~ )  , and H('/') 



from synthetic data are compared with Rayleigh and Modified Rayleigh model 

predictions of these statistics. Percentage differences are then computed 

following the pattern of Equation 71, and comparisons are done among these 

percentages. 

Test Results 

73. Figures 10 and 11 summarize the results of the bimodal tests. 

Figure 10 shows percentage differences of synthetic data from the Rayleigh 

model. Figure 11 shows synthetic data compared with the Modified Rayleigh 

model. In both figures, peak separation (defined by Equation 69) is along the 

abscissa. Symbols denote points of constant relative energy ratio (defined by 

Equation 70). 

74. In Figure 10, the synthetic data clearly approximate the Rayleigh 

model for small modal separations, as expected. Synthetic data begin to 

deviate from the Rayleigh model when the peak separation parameter reaches 

about 0.40, especially for averages on the high-wave tails of the distribu- 

tions , e . g . , H(l/lOO) /H,,, and H 1 l O / ~ r m s  . Curves for all values of the 

energy ratio behave similarly up to peak separations of about 0.60, and then 

diverge radically depending on the energy ratio. At the largest peak separa- 

tion, and for a small energy ratio, i.e., where the energy in the high- 

frequency mode is small relative to that in the low-frequency mode, the 

average of the highest 1 percent of the waves exceeds the Rayleigh prediction 

by almost 20 percent. This result suggests a rather severe problem in 

structural design if the Rayleigh model is used for estimating extreme waves, 

since it will be low by 20 percent under these conditions. For intermediate 

and large energy ratios and for large peak separations, the statistics of the 

higher wave averages are less, by up to 7 percent, than the Rayleigh model 

pre&iction 

7 5 .  The reasons for this severe dichotomy in the extreme average wave 

heights at large modal separations are not immediately obvious. Part of the 

explanation is how M,,, behaves relative to the absolute average heights in 

the various test conditions. If waves in the high-frequency mode are as 

energetic or are more energetic than those in the lower frequency mode (energy 

ratio 2 I), the effect is simply to broaden the spectrum. High-frequency 

waves are carried by lower frequency waves of comparable energy, and the 
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effect on average heights is similar to results from the broad, unimodal cases 

of Part IV. In fact, the cases in Figure 10 with energy ratios of 1.0, 2.0, 

and 4.0 have properties very much like the two broadest unimodal cases (Af/f, 

= 0.80 and 1.60) in Figure 3. Mean wave heights kl('I1) are higher than 

Rayleigh predictions by 2 to 3 percent; the H('/~) are smaller than Rayleigh 

by 2 to 3 percent; the kl(''l0) are smaller by 3 to 5 percent; and the H(~/'OO) 

are smaller by 3 to 10 percent. The evident conclusion is that from some 

bimodal spectra with intermediate and large peak separation, the effect on 

wave height averages is the same as for broad, unimodal spectra. 

76. For bimodal spectra with low energy ratios (energy in the high- 

frequency mode somewhat smaller than that in the low-frequency mode), average 

wave height behavior is very different at large peak separations. Here, 

again, short waves are being carried on longer waves, but now the short waves 

tend to have less amplitude than the long waves. This situation leads to the 

condition that at the crests and troughs of the long waves, there are a number 

of short waves whose extrema do not cross the line of zero displacement. 

There tend to be higher crests because short wave crests add to long wave 

crests, and deeper troughs because short wave troughs drop below long wave 

troughs, but fewer waves overall because the short waves do not have as many 

zero crossings as when they have higher energy. In regions of the time series 

near nodes (zero-crossings) of the low-frequency waves, the number of zero 

crossings is about the same as for higher levels of high-frequency energy. 

Hence, there is a relative reduction in the number of waves of intermediate 

height, those which would occur if the high-frequency waves reached zero level 

from extrema of the low-frequency waves. There becomes a relative abundance 

of both large and small waves, at the expense of the number of waves of inter- 

mediate height. 

77. This redistribution of wave heights also affects the value of 

H,,, , a parameter used to normalize all distributions and parameters in this 

study-. The net results of this alteration of H,,, (relative to H,, , the 

parameter used to govern total spectral energy and to generate the time 

series) and the redistribution of wave heights are shown as the normalized 

wave height averages in Figure 10. The higher wave height averages are very 

much higher than the Raykeigh prediction. For the bower averages, H ( " ~ )  

hovers near the RayPeigh prediction, and the average wave height 'H("") tends 

to be less than the Raykeigh value. 



78. A remarkable improvement over the results shown in Figure 10 is the 

comparison of the same synthetic data with the Modified Rayliegh model as 

shown in Figure 11. This improved comparison could be expected for two 

reasons. One reason is that the Modified Rayleigh model is a two-parameter 

model and is therefore much more highly adaptable than the Rayleigh model. 

The second reason is that the effective broadening of the spectra by medium- 

to-large modal separations and medium-to-large energy ratios is rather like 

the broad unimodal cases for which the Modified Rayleigh model worked excep- 

tionally well, as shown in Figure 4. 

79. However, bimodal cases with large modal separations and small 

energy ratios were not entirely well-fitted by the Modified Rayleigh model. 

There is some improvement over the Rayleigh model as can be seen by comparing 

Figures lo and 11 (they are plotted at the same scale), but this improvement 

is likely due to the improved adaptability of the Modified Rayleigh model 

rather than any inherent ability to represent the underlying process. This 

result suggests that for wide modal separations and small energy ratios, there 

is another, as yet undefined, distribution which better represents these 

processes. 

80. Some examples will clarify the above arguments. Figures 12, 13, 

14, and 15 show pdf and exceedence curves for time series derived from bimodal 

spectra with small, intermediate, and two cases of large modal separation. 

Figure 12 represents a case where modal separation is small ( = 0.10) and 

energy ratio is also small ( = 0.25). In this case, the synthetic data lie 

very close to the Rayleigh curve, and the Modified Rayleigh model is very near 

the Rayleigh model asymptotic shape. Hence, under these conditions, the 

process is well-modeled by the Rayleigh pdf. Figure 13 represents a case with 

the same energy ratio as in Figure 12, but with an intermediate modal 

separation ( = 0.60). The effective spectral broadening is apparent, espe- 

cially in the exceedence curves. Synthetic data and Modified Rayleigh results 

agree very closely, and both differ from the Rayleigh model on the high-wave 

tail of the distribution. This behavior is very much like that shown in 

Figure 9, representing broad-banded, unimodal spectra. 

81. Figures 14 and 15 depict results from cases where the governing 

bimodal spectra have the largest separation parameter ( = 1 . 3 3 ) ,  but extremes 

of relative energy parameter ( = 4.0 and 0.25, respectively). Figure 14 

represents a case that follows the pattern of large relative modal energy. 



Wave Height Distributions 
Averages f r om  20 Bimodal, Band-Limited, White Spectra 

Mode fc(Hz) A f / f c  h ( m )  N 
1 0.095 0.10500 1.789 327 
2 0. 105 0.09500 0.894 327 

Hrms = 1.407 * 0.002 Hrrrq = 1.672 f 0.014 E = 0.102978 

Figure 12. Probability and exceedence curves from bimodal spectra with 
small modal separation 



Wave Height Distributions 
Averages f rom 20 Bimodal, Band-Limited, White Spectra 

Mode fc(Hz)  A f / f c  h ( m )  N 
1 0.070 0.14300 1.789 328 
2 0.130 0.07690 0.894 328 

H r m  = 1.374 !C 0.008 H r r x  = 1.611 f 0.012 E = 0.551182 
'5 - 

no 
lo- 

I " " I " " I " " I ' ~ ~ r l ' ~ "  

2759 waves sampled . 
Rayleigh 

.......... Modif ied Rayleigh 

- 

V 

a - 

x 2759 waves sampled 

Modif ied Rayleigh 

H/Hrr"s 

Figure 13. Probability and exceedence curves for bimodal spectra with 
intermediate modal separation 
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Figure 14. Probability and exceedence curves from bimodal spectra with 
large modal separation and high energy ratio 



Figure 15. Probability and exceedence curves from bimodal spectra with 
large modal separation and small energy ratio 



Synthetic wave heights average to an exceedence curve that is more nearly 

represented by the Modified Rayleigh model than the Rayleigh model. Dramatic 

differences from Figure 14 are seen in Figure 15, which represents a case with 

small relative energy. In Figure 15, synthetic data differ dramatically from 

both Rayleigh and Modified Rayleigh pdf curves. The exceedence estimate of 

the synthetic data clearly differs from the Rayleigh model, as shown in the 

lower part of Figure 15. Synthetic data also deviate by more than one 

standard deviation from the Modified Rayleigh curve at low and intermediate 

wave heights. The Modified Rayleigh model does appear to conform reasonably 

well with synthetic data in the high-wave tail of the distribution, but this 

may simply be a fortuitous circumstance, given the poor agreement elsewhere in 

the distribution. 

82. To summarize, it appears that for spectra with broad ranges of 

modal separation parameter and with a moderate range of relative modal 

energies roughly greater than 1.0, derived wave height distributions tend to 

be well-represented by the Modified Rayleigh model. Most distributions in 

these ranges of parameters tend to be overpredicted by the Rayleigh model, as 

was found for time series derived from broad-banded spectra and as have been 

found frequently in natural observations (SPM 1984). For large modal separa- 

tions and small relative modal energy, synthetic data deviate strongly from 

the Rayleigh model and deviate significantly from the Modified Rayleigh model. 

This result suggests the need for a third model to represent wave height 

distributions under conditions where governing spectra have wide modal 

separations and low relative energies. It also suggests that further study be 

performed to determine how frequently such conditions occur in nature, so as 

to determine their relative importance. 



PART VI: CONCLUSION 

83. In this report, a simple examination is made of wave height 

distributions in synthetic sea states characterized by energy spectra with 

multiple peaks, i.e., having energy centered at two or more distinct frequen- 

cies. Sea states with broad frequency spectra are included in this study 

since such seas are also composed of waves of diverse frequencies. These 

cases violate the assumptions of unimodal, narrow spectra that are formally 

required for the conventionally used Rayleigh distribution of wave heights to 

apply. Because of common usage of this distribution in engineering design, it 

is important to determine what errors are incurred by these violations and if 

an alternate model can compensate for them. 

84. Reported here are tests of the Rayleigh and Modified Rayleigh wave 

height distribution models. These models are compared with wave heights from 

idealized, synthetic time series having spectra with variable widths, numbers 

of modes, and modal separations. The Modified Rayleigh model is the two- 

parameter, deepwater asymptotic form of the Beta-Rayleigh distribution 

introduced by Hughes and Borgman (1987). Synthetic time series are produced 

by inverse Fourier transform techniques and consist of 65,536 points at a 

nominal time step of 0.5 sec, so the record simulates in excess of 9 hr of 

sampling. Synthetic wave periods are maintained near 10 sec so the samples 

contain typically about 3,000 waves, enough to compute some reasonably concise 

statistics. Random phases are used in signal generation, so there is the 

possibility of some variation between runs with otherwise constant generating 

parameters. Hence, 20 runs were done for each case, and the results averaged 

to produce a stabler estimate of expected behavior. 

85. The first part of this work involves determining some of the limits 

implied by the phrase "unimodal, narrow spectrum" in the synthesis of time 

series having Rayleigh distributions of wave heights. It is found that for 

unimodal, band-limited, white spectra, there are constraints on both the 

overall bandwidth and the number of component waves for a close approximation 

to a Rayleigh process to occur. Average heights H(ll') and the average of 

the highest one-third waves H('I1) are within 2 to 3 percent of Rayleigh 

estimates as long as bandwidths normalized by center frequencies do not exceed 

about Af/f, = 0.4 . For H"~~') , it appears that about 20 component waves 

are necessary to differ from a Rayleigh H(ll'') by less than 10 percent. For 



H(' ' lo0) , it takes about 100 component waves to stay within 10 percent of a 

Rayleigh H ( ~ ~ ~ ~ ~ )  . Beyond a certain bulk spectral bandwidth, the parameters 

do not appear to approach Rayleigh parameters, no matter how many component 

waves are used in the spectral definition. This is most clear for the widest 

case investigated here, Af/fc = 1.60 , but is also slightly evident in the 

next-to-widest case Af/fc = 0.80 . It is notable that even the mean wave 

height H ( l l ' )  and the average of the highest one-third waves H ( " ~ )  show 

some effect of spectral broadening. 

86. The Modified Rayleigh pdf and exceedence curves clearly represent 

the synthetic data better than the Rayleigh curves. With roughly the same 

constraints on numbers of component waves as for the Rayleigh comparison, 

averages of synthetic wave height distributions were within 2 percent of 

averages from the Modified Rayleigh model for all bandwidths and for averages 

out to H ( ~ ~ ~ ~ ~ )  . This result suggests that the Modified Rayleigh curve is a 

better model for broad spectra if the added parameter Hrmq can be determined 

directly from the spectra. It is not yet evident that this determination can 

be made, and further research is required to characterize H,,, in terms of 

spectral shape. 

87. The primary part of this investigation is examination of wave 

height distributions in wave signals derived from multimodal spectra. To keep 

the study simple, only bimodal cases are considered. Using criteria es- 

tablished in the unimodal tests, bimodal spectra are constructed from two 

unimodal spectra, each of which yields a Rayleigh wave height distribution by 

itself. Given this characteristic, the details of the mode structure 

(bandwidth and number of component wave trains) are no longer important. The 

two primary variables in these bimodal tests are a measure of modal separation 

in the frequency domain and the relative amount of energy in one mode compared 

with the other . 
88. Modal separation is characterized by differences between modal 

center frequencies normalized by the mean of the two modal center frequencies. 

In the present tests, the smallest modal separation is zero, corresponding to 

modes coincident in the frequency domain and representing a directional wave 

field where the modes have two different peak directions. The largest modal 

separation has one mode center frequency at 0.05 H z  and the other at 0.25 Hz, 

corresponding to wave periods of 20 and 4 sec, respectively, and considered to 

be a practical limit for wind waves. Five levels of relative energy have been 



used in the present tests. The relative energy ratio varies from 0.25 to 4.0 

following a geometric progression. 

89. Results of this part indicate that for spectra with broad ranges of 

modal separation parameter and with a ratio of low-frequency modal energy to 

high-frequency modal energy roughly greater than 1.0, derived wave height 

distributions tend to be well-represented by the Modified Rayleigh model. The 

Rayleigh model tends to overpredict all the wave height averages for these 

parametric ranges in much the same way as was found for time series derived 

from broad-banded spectra and as have been found frequently in natural 

observations (SPM 1984). For large modal separations and small high- 

frequency modal energy relative to low-frequency modal energy, synthetic data 

deviate strongly from the Rayleigh model and deviate significantly from the 

Modified Rayleigh model. This result suggests the need for a third model to 

represent wave height distributions under conditions where governing spectra 

have wide modal separations and low relative energies. It also suggests that 

further study be performed to determine how frequently such conditions occur 

in nature, so as to determine their relative importance. 

90. The two key findings in this study are, first, that spectra that 

are not narrow-banded or are bimodal with moderate-to-wide modal separations 

tend to have wave height distributions that are overpredicted by the Rayleigh 

wave height model, which may account for the common observation that the 

Rayleigh distribution is conservative for engineering design. Second, the 

Modified Rayleigh wave height model has a much better capability of charac- 

terizing distributions from broad-banded or multimodal wave fields. Further 

research is required to determine the parameters of the Modified Rayleigh 

model in terms of spectral parameters. Finally, these conclusions need to be 

tested with natural data to ensure that the artifice of synthesis has not 

biased the results. 
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APPENDIX A: NOTATION 

Fourier cosine coefficient at kth frequency for time series x 

Fourier cosine coefficient at kth frequency for time series y 

Fourier sine coefficient at kth frequency for time series x 

Fourier sine coefficient at kth frequency for time series y 

Modulus of sinusoidal component k of time series x 

Infinitesimal increment of frequency 

Infinitesimal increment of wave height 

Time step 

Infinitesimal increment of x 

Frequency 

Center frequency of a spectrum 

Specific frequencies 

Wave height 

Spectrum-based characteristic wave height 

The nth wave height in a set 

Average of highest fraction r of all wave heights 

Root-mean-quad wave height 

Root-mean-square wave height 

Average of highest one-third of all wave heights 

Alternate notation for H('l3) 

Randomly chosen wave height 

Summing index 

Index of an observed wave height; index of an element of a 
discrete function 

Number of wave heights in accumulation bin u 



Summing index; frequency index 

PMR 

PR 

P 

p2 

PMR 

PR 

Prob[ ] 

Q 

Q2 

QD 

QMR 

QR 

r 

The nth moment of a frequency spectrum 

Zeroth moment of frequency spectrum 

Second moment of frequency spectrum 

Fourth moment of frequency spectrum 

Index of a set of discrete wave heights; index of a sequence of 
time steps 

Number of observed waves in a record; number of observed water 
surface elevations 

Probability density function 

Two-wave probability density function 

Probability density function 

Modified Rayleigh probability density function 

Rayleigh probability density function 

Cumulative probability function 

Two-wave cumulative probability function 

Modified Rayleigh cumulative probability function 

Rayleigh cumulative probability function 

Probability that expression in [ ] is true 

Exceedence probability 

Two-wave exceedence probability 

Exceedence probability estimated from data 

Modified Rayleigh exceedence probability 

Rayleigh exceedence probability 

Fraction between zero and one 

Element j of function representing fraction of highest observed 
wave s 



Sea surface variance spectral density 

Discrete spectral density at kth frequency of time series x 

Discrete spectral density at kth frequency of time series y 

Element n of a sequence of N discrete times 

Bin index for histogram of wave heights 

Uniform random deviate at kth frequency of time series x 

Uniform random deviate at kth frequency of time series y 

Dummy integration variable; a time series 

Element n of discrete time series x 

Discrete Fourier transform element k of time series x 

A time series 

Element n of discrete time series y 

Discrete Fourier transform element k of time series y 

Discrete Fourier transform element k of complex time series 
x + iy 

Parameter of Modified Rayleigh pdf 

Gamma function 

Discrete increment of frequency 

Discrete increment of wave height 

Discrete time step 

Frequency spectral width parameter 

Phase of sinusoidal component k of time series x 
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