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PREFACE

The model investigations reported herein were authorized by the Head—
quarters, US Army Corps of Engineers (HQUSACE), on 30 March 1989 at the
request of the US Army Engineer District, Chicago (NCC). The studies were
conducted by personnel of the Hydraulics Laboratory (HL) of the US Army
Engineer Waterways Experiment Station (WES) during the period April 1989 to
April 1990 under the direction of Messrs. F. A. Herrmann, Jr., Chief, HL; and
R. A. Sager, Assistant Chief, HL; and under the general supervision of
Messrs. G. A. Pickering, Chief, Hydraulic Structures Division (HSD), HL; and
N. R. Oswalt, Chief, Spillways and Channels Branch, HSD. Project engineer for
the model studies was Mr. B. P. Fletcher, assisted by Messrs. J. R,

Rucker, Jr., and E. L. Jefferson, all of HSD. The models were constructed by
Mr. M. A. Simmons of the Engineering and Construction Services Division, WES.
This report was prepared by Mr. Fletcher, drawings were prepared by Mr.
Rucker, and the report was edited by Mrs. M. C. Gay, Information Technology
Laboratory, WES.

During the investigation, Messrs. Sam Powell, HQUSACE; Scott Vowinkel,
US Army Engineer Division, North-Central; John D'Anigllo, Joseph Jacobazzi,
Tom Fogarty, Dave Handwerk, Stephen Garbaciak, John Morgan, and Bruce
Halverson, NCC; and Dr. Anreek Paintel, Metropolitan Water Reclamation Dis-—
trict of Greater Chicago, visited WES to discuss the program of model tests
and observe the models in operation.

Commander and Director of WES during preparation of this report was

COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non—SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
acre—feet 1,233.489 cubic metres
cubic feet 0.02831685 cubic metres
degrees (angle) 0.01745329 radians
feet 0.3048 metres
gallons (US liquid) 0.003785412 cubic metres
inches 25.4 millimetres
miles (US statute) 1.609347 kilometres



MORNING GI.ORY TINTLET AND MANTFOLD OUTLET STRUCTURE

MCCOOK RESERVOIR, CHICAGO, ILLINOTS

Hyvdraulic Model Investigation

PART I: INTRODUCTION

Background

1. The first combined sewers (storm runoff and sewage) in the city of
Chicago were constructed in 1834. Beginning in the early 1890's, the increase
in construction of buildings, hard pavements, and sidewalks began to cause
greater storm runoff than had been allowed for in the original sewer designs.
This resulted in overloading the combined sewer system and flooding of
basements in the 1890's.

2. Presently, the primary flooding problem in the combined sewer area
is basement flooding due to sewer backup. Over 500,000 housing structures are
potentially subject to basement flooding and more than 170,000 structures are
flooded to varying degrees on an average annual basis. The associated average
annual flood damages are estimated to be in excess of $140 million. Addi-
tional damage is caused by combined sewer overflows to the area watercourse.
Figure 1 illustrates how the combined sewer system works and the flooding
problem that occurs when the sewer outfalls become submerged. Figure 2 illus—
trates additional features of a typical combined sewer system. This type of
system transports both sanitary wastewater and storm water runoff in a single
pipe. Sanitary water, foundation drainage, and roof runoff from an individual
house are carried by the house drain to the lateral sewer located in the
street. Storm water from the streets enters the lateral sewer through a catch
drain basin. Under normal dry weather conditions, the sewer flow moves from
the lateral sewer through the submain and main sewers into the interceptor
sewer, which conveys the flow to a waste treatment plant. When the capacity
of the interceptor sewer or treatment plant is exceeded by combined sewer and
storm flow, the excess runoff overflows, untreated, directly into the local
watercourse (Figure 2).

3. The Tunnel and Reservoir Plan, or TARP, has been proposed to reduce

the flooding and pollution problems associated with the combined sewer system.
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a. Operation of existing outfall, dry weather condition

Under dry weather conditions, the combined sewer system
carries sanitary sewage to treatment plants via interceptor
sewers. The system has sufficient capacity to handle dry
weather flow without backup into basements or discharge
into streams.
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b. Outfall in operation after interceptor capacity is exceeded

At the beginning of a storm period, river levels are low. As
rain continues, the sewer system fills up. To relieve pressure
in the sewer system, a mixture of storm runoff and sanitary
sewage is discharged, untreated, from sewer outfalls into streams.

MANHOLE AND CATCH BASIN
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c. Operation of existing outfall, heavy rain condition

During periods of continuing rainfall, river levels rise,
submerging the relief outfalls. Pressure then builds up
within the sewer system, causing storm water mixed with
raw sewage to back up from the sewers into basements and
streets.

Figure 1. Combined sewer outfall submergence
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TARP, as originally formulated, included near surface collector and drop shaft
systems, 132 miles* of tunnels located 200 to 300 ft underground, and five
reservoirs. TARP would permit storm water runoff to be collected from the
local sewer systems and moved to the tunnels by the collector and drop shaft
system. The tunnels would convey the storm water to the reservoirs, which
would store the runoff until it could be discharged to the watercourses
without causing flooding.

4. In 1974, TARP was divided into two parts by agreement between the
Office of Management and Budget and the US Environmental Protection Agency.
The Phase 1 features were identified as being related primarily to water qual-
ity enhancement. Phase 2 included those features associated mainly with flood
damage reduction. Phase 1 includes about 110 miles of tunnels, collector and
drop shaft systems which connect the sewers to the tunnels, and upgraded
treatment works. Approximately 50 miles of Phase 1 tunnels and two large
pumping stations have been constructed and are in operation. Phase 2 includes
22 miles of tunnels and five reservoirs, which would provide 127,000 acre-ft
or about 40 billion gallons of floodwater storage. Construction of Phase 2

has not been started.

The Prototype

5. The project plan provides for use of a rock quarry (McCook
Reservoir) as a 32,100-acre—ft (10.43 billion gallons) reservoir that would
provide temporary storage for combined sewer and storm flow runoff. The stor-
age system would be sufficient to capture the runoff from a 30-year, 24-hour
storm event. When the reservoir is filled to its maximum design capacity, the
water—surface elevation will be at —-70%%, or between 90 and 140 ft below the
ground surface elevation.

6. The proposed McCook Reservoir will be located in the city of McCook,
IL (Figure 3). The proposed reservoir will be located east of East Avenue,
west of the Indiana Harbor Belt Railroad, and south of 55th Street within the

communities of McCook and Hodgkins, IL, as shown in Plate 1.

* A table of factors for converting non-SI units of measurement to SI
(metric) units is found on page 3.

*% All elevations (el) cited in this report are in feet referenced to Chicago
City Datum (CCD).
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Figure 3. Vicinity and location maps

7. Sewage and storm water in the tunnels would flow by gravity to the
McCook Reservoir for temporary storage. Flows from the tunnels as high as
85,000 cfs would discharge into the reservoir (Figure 4) through 45 outlet
ports 5.75 ft square evenly spaced every 65 ft in a 2,910-ft-long manifold
(Plates 2 and 3). The outlet manifold dimensions will be approximately 37 ft
high and 37 ft wide at the upstream end and taper to 25 ft high and 15 ft wide
at the downstream end. The invert elevation of the outlet manifold will be
—-265.5. The outlet manifold will be directly connected to the tunnel with a
wheel gate structure/surge chamber (Figure 4) located in the tunnel about

500 ft upstream of the manifold. The wheel gate structure is designed to
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Figure 4. McCook Reservoir (schematic)

permit closure of the gates to prevent flow from the tunnel to the reservoir
or to prevent backflow from the reservoir to the tunnel.

8. As the capacity of the West—Southwest Treatment Plant permits, the
TARP Mainstream Pumping Station in Hodgkins, IL, will pump sewage and storm
water from the McCook Reservoir to the West-Southwest Treatment Plant. The
treated effluent will be discharged into the area watercourse. Flow pumped
from the reservoir will exit through a morning glory intake structure (Fig—

ure 4) located approximately in the bottom of the reservoir.

Purpose and Scope of the Model Studies

9. The model studies were conducted to evaluate the hydraulic charac-—
teristics of the morning glory inlet and the manifold outlet structures and
develop modifications, if needed, for satisfactory designs. Information

desired from operation of the model of the morning glory spillway included



evaluation of head loss, air entrainment, vortices, flow patterns, pressures,
and areas of potential cavitation. The model of the manifold outlet was
designed to enable evaluation of head loss, flow patterns, velocities, pres-—
sures, flow distribution, and discharge rating curves. Designs developed or
verified by the models should ensure the hydraulic integrity of the structures

for all anticipated flow conditions.

10



PART II: THE MODELS

Description

10. The model used to investigate the morning glory spillway (Plate 4)
was constructed to a linear scale of 1:20.7 and reproduced a 207- by 207-ft
area of the reservoir topography. The morning glory spillway was located in
the center of the flume (Figure 5). The model simulated the morning glory
intake, the vertical shaft, elbow, and a 700-ft length of discharge conduit.
Satisfactory flow distribution to the reservoir was provided through ports
located around the periphery of the simulated portion of the reservoir
(Plate 4). A butterfly valve was located at the downstream end of the conduit
(Plate 4) to permit simulation of various hydraulic gradients. The model was
capable of simulating discharges as high as 2,000 cfs and water—surface eleva-
tions as high as —70. The model was designed to enable calibration of the
intake, determination of losses through the structure, detection of areas of
potential cavitation, and detection of vortices.

11. Computations involving prototype and model conduit friction indi-
cated insignificant differences in the prototype and model conduit head losses
for the design discharge of 2,000 cfs. Therefore, there was no need to adjust
the model conduit length or slope to compensate for a difference in head loss.

12. The model used to investigate the manifold outlet was constructed to
a linear scale of 1:40 (Plate 2). The model simulated the complete structure
(Figure 6), including the wheel gates, gate and surge shafts, transition con-
necting the wheel gate structure to the manifold, and the primary basin. The
wheel gate structure viewed from upstream, downstream, and the side is shown
in Figure 7. A side view of a section of the manifold showing the outlet
ports is shown in Figure 8. The model could simulate discharges as high as
85,000 cfs and water—surface elevations as high as —140.0. The model provided
means for calibrating the wheel gates, detecting areas of potential cavita-—
tion, evaluating the transition design upstream and downstream of the wheel
gates, evaluating the design of the pier separating the two wheel gates,
determining head loss in the manifold, and evaluating energy dissipation in
the primary basin.

13. The models were constructed of transparent plastic to permit visual

observation of internal flow patterns, turbulence, and air ingestion. Water

11



Figure 5. Morning glory intake

WHEEL
GATE
STRUCTURE

Figure 6. Manifold outlet model
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a. Upstream view

b. Downstream view

Figure 7. Wheel gate structure (Continued)
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Figure 8. Outlet ports in manifold

used in the models was recycled and discharges were measured with venturi
flowmeters. Water—surface elevations were measured with staff and point
gages. Velocities were measured with pitot tubes and electronic velocity
probes. Current patterns were determined by observation of dye injected into
the water and confetti sprinkled on the water surface. Hydrostatic pressures
were measured at various locations in the structures with piezometers. Flow

conditions were documented by sketches, photographs, and videos.

Scale Relations

14. The accepted equations of hydraulic similitude based on Froude cri-
teria were used to express the mathematical relations between the dimensions
and hydraulic quantities of the models and prototypes. The general relations
expressed in terms of the model scales or length ratios L, are presented in

the following tabulation:

15



Characteristic

Length
Area

Time
Velocity
Discharge
Pressure

Weight

Dimension*
L =1L
r r
A = L2
r r
T = Ll/2
r r
v L1/2
r r
5/2
Qr Lr
P =1L
r r
W = L3
r T

Scale Relation
Model:Prototvpe

Morning Glory
Intake

1:20.7

1:428.5
1:4.5
1:4.5

1:1,949.5

1:8,870

Manifold

Qutlet

140
11,600
:6.3

16.3
:10,119.3
140

164,000

* Dimensions are in terms of length.

16



PART III: TESTS AND RESULTS

Morning Glory Intake

15. Tests to determine the relationship between discharge, pool eleva-—
tion, hydraulic gradient, and air entrainment were conducted by setting the
hydraulic gradient and discharge and permitting the pool to stabilize. The
elevation of the hydraulic gradient was set at a point (piezometer 26)

323 ft downstream from the center line of the shaft (Plate 4). Piezometer 26
was chosen for setting the hydraulic gradient because it was in a hydrau-
lically stable location that was unaffected by turbulence from the elbow and
valve located at the downstream end of the conduit. After the pool stabi-
lized, visual observations were made for a period of 20 minutes (prototype) to
detect and record the stage of the most severe vortex. Typical stages of
vortex development are shown in Figure 9.

16. Evaluation techniques used in the model included documentation of
the presence of air in the conduit during either conduit or weir control.
During conduit control, if air is drawn into the intake it is by stage D
and/or E vortices (Figure 9). Stage D and E vortices generate air entrainment
that appears in the form of air bubbles in the conduit as shown in Plate 5.
During the transition from weir to conduit or from conduit to weir control,
air is entrained by turbulence and is also observed in the conduit as air
bubbles. Welr control (Plate 5) occurs when the hydraulic gradient in the
shaft is below the weir crest. During weir control, turbulence generated by
the plunging nappes induces significant air ingestion in the intake that ap-
pears as slug flow in the conduit (Plate 5).

17. Various flow conditions with and without the intake cover plate are
shown in Photos 1-7. 1In some photographs surface currents are depicted by
confetti and bottom currents are depicted by dye.

18. The intake cover plate was removed to permit observation of weir
control flow conditions below the elevation of the cover plate and to observe
vortices that occur only without the cover plate during conduit control.
Photos 1-3 illustrate weir control with discharges of 500, 1,000, and 2,000
cfs, respectively. Flow transitioning from weir to conduit control during a
discharge of 2,000 c¢fs is shown in Photo 4. Surface vortices above the intake

with a discharge of 2,000 cfs and pool elevations of —190 and -160 are shown

17
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—_— SURFACE DIMPLE

TR SURFACE DEPRESSION WITH NO AIR ENTRAINMENT

C
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AIR ENTRAINMENT INTO INTAKE

VORTEX WITH AIR CHORE EXTENDING
FROM WATER SURFACE INTO INTAKE

Figure 9. Stages of vortex development

in Photos 5 and 6, respectively. The vortices shown in Photos 5 and 6 were
sustained air—entraining vortices that had air cores about 9 in, in diameter
(prototype).

19. The cover plate was installed and no significant air—entraining
vortices occurred during conduit control. Flow conditions with a discharge of
2,000 cfs and a pool elevation of —-190 are shown in Photo 7.

20. The relationship between discharge and pool elevation is presented
in Plate 6. Basic data used for development of the plot including flow con-
trol and stages of vortex development are tabulated in Table 1. During con-
duit control, pool characteristics ranged from hydraulic conditions having no
vortices to stage E vortices. Since air entrainment in the conduit during

conduit control is caused by stage D and E vortices (Figure 9), only the

18



conditions that are conducive to stage D and E vortices are highlighted in
Plate 6. The plot indicates that D and E vortices occurred only when the
water surface was below the bottom of the vortex suppressor (cover) plate
(el -212). However, even with the water surface below the bottom of the cover
plate, stage D and E vortices did not occur during discharges less than
550 cfs.

21. As the hydraulic gradient in the shaft fell below the weir crest
el —-220, weir control developed. During weir control, the nappe plunges into
the shaft, intersects the water surface at the elevation of the hydraulic
gradient in the shaft, and ingests air into the shaft. For discharges above
800 cfs (Plate 6), ingested air appeared in the conduit as slug flow
(Plate 5). Weir flow with discharges between 550 and 800 cfs (Plate 6)
generated only air bubbles in the conduit (Plate 5) similar to those produced
by stage D and E vortices. Weir control with discharges below 550 cfs en—
trained air in the shaft, but the low velocity in the shaft permitted the
entrained air to rise to the water surface in the shaft.

22. Pressures for various anticipated flow conditions were measured in
the structure with plezometers located as shown in Plates 7 and 8 (type 1
intake). Hydraulic gradient elevations and pressures are tabulated in
Table 2. No tendency for cavitation was indicated as pressures were stable
(amplitude of pressure fluctuations less than 0.2 ft) and positive for all
flow conditions.

23. Entrance losses were obtained from the model data for various flow
conditions as follows. Energy gradients in the conduit were determined from
the pressures indicated by piezometers 18 to 36 (Plate 7) as shown in the

following equation:

2
EG = HG + . (1)

where
EG = energy gradient
HG = hydraulic gradient
V = average velocity in the conduit, ft/sec
g = acceleration due to gravity, ft/sec?

Pressures measured with piezometers 18 to 36 indicated that they were within a

19



region relatively free from the effects of boundary layer development and
acceleration of flow at the entrance and the butterfly valve in the conduit.
The conduit resistance coefficients determined were approximately the same as
those indicated by the smooth pipe curve of a Moody diagram for appropriate
Reynolds numbers. Using piezometers 18 to 36 as a reference, the hydraulic
gradients in the conduit were projected to sta 0423, the conduit entrance.
Pressures measured by means of piezometers 6a and 6b (Plate 8) were used to
determine the elevation of the energy gradient in the shaft at el -253.4.
Separate entrance losses were determined from the elevation of the energy
gradient at the conduit entrance, the shaft at el -253.4, and the pool. The
separate entrance losses for a discharge of 2,000 cfs and a pool elevation
of —-190.0 are illustrated by the difference in energy gradient elevations in
Plate 7. Separate entrance losses and coefficients for discharges ranging
from 1,100 to 2,140 cfs are tabulated in Table 3.

24, Tests were conducted to evaluate the feasibility of reducing the
vertical distance between the underside of the cover plate and the spillway
crest by lowering the cover plate 2.5 ft to el -214.5 (type 2 intake). A
sketch of the type 2 intake is shown in Plate 9.

25. Observation of various flow conditions indicated no tendency for
air—entraining vortices. Flow conditions during weir and conduit control were
considered similar to those observed in the type 1 intake (i.e., cover plate
located at el —-212.0).

26. Pressures for various flow conditions were measured in the type 2
design with piezometers located as shown in Plates 9 and 10. Piezometers la
and 1b were added and installed in the underside of the cover plate as shown
in Plate 9. Hydraulic gradient elevations and pressures are tabulated in
Table 4. Pressures were stable and positive for all flow conditions.

27. Entrance losses with the type 2 design were obtained for wvarious
flow conditions. Pressures determined from piezometers 18 to 36 were used as
a reference to project the hydraulic gradients to sta 0+23 (Plate 10), the
conduit entrance. Pressures measured by means of pilezometers 6a and 6b
(Plate 9) were used to determine the elevation of the energy gradient in the
shaft at el -253.4. Separate entrance losses were determined from the eleva—
tion of the energy gradient at the conduit entrance, the shaft at el -253.4,
and the pool. Separate entrance losses and coefficients for various flow

conditions are tabulated in Table 5. A comparison with the type 1 design

20



(test results presented in Table 3) indicates that the average value of the
loss coefficient K, between the pool and the shaft at el -253.4 was insig-
nificantly higher with the type 2 design. Test results indicate that lowering
the cover plate 2.5 ft will not have a significant effect on hydraulic

performance.

Manifold Outlet

28. The model of the manifold outlet was designed, primarily, to mea—
sure pressures in the wheel gate structure and manifold, to determine loss
coefficients in the manifold, and to determine flow distribution in the mani-
fold outlet ports and primary basin. Hydraulic performance in the wheel gate
structure and manifold (Plate 2) was documented by photographs. Various gate
openings and flow conditions in the wheel gate structure (Plate 11) are shown
in Photos 8-10. Flow conditions with various water—surface elevations and
flows exiting the outlet ports in the manifold are shown in Photos 11-13.
Some of the flow conditions were photographed with confetti sprinkled on the
water surface simulating a 20-sec (prototype) time exposure to depict the
magnitude and direction of surface currents.

29. The approach curve, outlet manifold, various cross sections of the
manifold, and piezometer locations are shown in Plate 3. Tests to measure
hydrostatic pressure were conducted for various discharges with the wheel
gates fully open and a reservoir (tailwater) water—surface elevation of
~190.0. Additional piezometer locations and the hydraulic gradients deter-
mined from piezometers 1-54 in the wheel gate structure and outlet manifold
are shown in Plates 12 and 13, respectively. The basic data are tabulated in
Table 6. The pressures determined by means of the piezometers were all posi-
tive and no tendency for cavitation was indicated.

30. Computations for a discharge of 50,000 cfs and a velocity V., of
36.5 ft/sec to determine the total head loss H, and the loss coefficient K,
for the outlet manifold based on the energy gradient elevations at the up-—
stream end of the outlet manifold are illustrated in Plate 1l4. Values of head
loss and loss coefficients determined from the hydraulic gradients in Plate 13
are tabulated in Table 7.

31. Tests were conducted to investigate for potential areas of cavita-

tion by measuring hydrostatic pressures in one of the manifold outlet ports.
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Velocity measurements at the manifold port outlets indicated that the dis—
charge exiting the manifold is almost uniformly distributed among the

45 ports. Also, observations aided by dye injection indicated similar flow
patterns exiting each port.

32. Based on the velocity measurements and observations, port 18
(Plate 14) was arbitrarily selected for installation of piezometers and mea-
surement of pressures. Pilezometer locations in port 18 are shown in the plan
and profile views in Plate 15. Pressures measured for a reservoir water—
surface elevation of -190.0 and various discharges are shown in Plate 15.
Analysis of the data indicates positive pressures; therefore, there should be
no tendency for cavitation in the prototype structure.

33. Tests were conducted to document the magnitude and direction of
velocities generated by discharges of 30,000 and 85,000 cfs exiting the
45 ports in the manifold. Pressure and velocity measurements indicated that
discharges exiting the ports were approximately evenly distributed among the
45 ports. For a discharge of 85,000 cfs, flow through the upstream port
(port 1) exited at an angle of 60 deg from the longitudinal center line of the
manifold (Figure 10). Flow from port 44 exited at an angle of 80 deg
(Figure 10). As flow successively exited ports 1-45, the angle of the exiting
flow became more normal to the manifold because the flow rate and thus the
longitudinal component of velocity inside the manifold progressively de-
creased. Flow from port 45, the port farthest downstream, exited normal to
the longitudinal center line of the manifold (Figure 10) because port 45 was
offset 10 ft from the downstream end of the manifold. The 10-ft offset per-
mitted flow inside the manifold to approach the port from a direction
essentially normal to the port.

34. The direction of flow exiting the manifold gradually became more
normal to the manifold as discharges were reduced below 85,000 cfs. For a
discharge of 10,000 cfs, the angle of flow exiting ports 1-44 increased by
about 10 deg relative to the flow direction measured with a discharge of
85,000 cfs (Figure 10). Flow exiting port 45 remained normal to the manifold,
regardless of the discharge.

35. Currents and velocities generated in the primary basin by discharges
of 30,000 and 85,000 cfs are shown in Plates 16 and 17, respectively. Typical
flow patterns and velocities in the primary basin in cross—section views are

also shown in Plates 16 and 17. The currents and velocities shown in the plan
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Figure 10. Typical flow patterns for flow exiting manifold
ports at a discharge of 85,000 cfs

23



views were measured 2 ft above the bottom. Angular flow exiting the manifold
ports contributed to eddies at the upstream and downstream ends of the primary
basin (Plates 16 and 17). No significant surface waves were generated. The

energy in the flow exiting the manifold ports was satisfactorily dissipated in

the primary basin.
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PART IV: SUMMARY AND DISCUSSION

36. Tests were conducted in two separate models to investigate hydraulic
performance in the morning glory intake and manifold outlet.

37. The model of the morning glory intake was designed to permit evalu-
ation of head loss, flow patterns, vortices, and areas of potential cavita-—
tion. Tests indicated that the cover plate was needed to prevent the forma-
tion of air—entraining vortices during conduit control. Subsequent tests
indicated that the elevation of the cover plate could be lowered 2.5 ft with-—
out adversely affecting hydraulic performance.

38. Tests were conducted to determine the relationship between dis—
charge, pool elevation, hydraulic gradient, and air entrainment. Air entrain-
ment (vortices) during conduit control normally occurred when the water sur—
face was below the underside of the cover plate during the transition from
conduit to weir control. The test results indicated that air entrainment
could be prevented by reducing the discharge to 550 cfs or less. During weir
control, the nappe plunged into the shaft and ingested air into the shaft.

For discharges above 800 cfs, ingested air appeared in the conduit as slug
flow. Weir flow with discharges between 550 and 800 cfs generated only air
bubbles in the conduit. Weir control with discharges below 550 cfs did
entrain air in the shaft, but the low velocity in the shaft permitted the
entrained air to rise to the water surface in the shaft.

39. Pressures measured for various flow conditions indicated no tendency
for cavitation. Entrance losses in the morning glory intake were obtained for
various flow conditions by measuring pressures in the shaft and conduit. The
pressures in the conduit were used to establish the elevation of the hydraulic
gradient at the conduit entrance. Additional piezometers located in the in-
take and shaft were used to determine the separate losses in the structure.

40. The model of the manifold outlet permitted evaluation and documen—
tation of flow conditions in the wheel gate structure and manifold. Hydro-
static pressure in the wheel gate structure and manifold was measured by means
of piezometers for various discharges. The pressures were all positive and no
tendency for cavitation was indicated. Loss coefficients based on the eleva-
tion of the hydraulic gradient at the upstream end of the manifold were
determined for various discharges.

41. Pressures measured at a manifold outlet port that had typical flow
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characteristics indicated no zones of potential cavitation.

42. The magnitude and direction of flow exiting the 45 ports was mea—
sured in the primary basin. Discharge exiting the manifold was evenly
distributed among the 45 ports. The energy in the flow exiting the ports was
satisfactorily dissipated in the primary basin.

43. Test results obtained from the models of the morning glory intake
and the manifold outlet indicate satisfactory hydraulic performance can be

expected for any anticipated flow conditions.
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Table 1

Discharge Versus Pool Elevation

Type 1 Design

Elevation
of Hy-
draulic
Gradient
Piezom-

eter 26%

-130

-190

Discharge
cfs

220
330
550
660
1,100
1,500
2,000
2,200
2,400

220
330
550
660
1,100
1,500
2,000
2,200
2,400

220
330
550
660
1,110
1,500
2,000
2,200
2,400

220
330
550
660
1,100
1,500
2,000

Pool

-129.
-128.
-128.
-127.
-124.
-123.
-116.
-114.
-111.

-159.
-159.
-159.
-158.
-156.
-153.
-148.
-145.
-139.

-190.
-189.
-189.
-189.
-187.
-185.
-181.
-178.
-176.

-205.
-204.
-203.
-203.
-201.
-197.
-195.

Flow

=1
=

Conduit

OO UNYI IO UVEOENONOMNOO VUL ONKNWYW COULhu U~ WK WO

(Continued)

Control**

Stage
of
Vortex
Develop-

mentt

o P —— O

o > >

* See Plate 4.
*%* See Plate 5.
t See Figure 9.



Table 1 (Concluded)

Elevation
of Hy-
draulic
Gradient
Piezom-
eter 26

-205
-205

-210

Discharge
cfs

2,200
2,400

220
330
550
660
1,100
1,500
2,000
2,200

220
330
550
660
1,100
1,500
2,000
2,200

220
330
550
660
1,110
1,500
2,000
2,200

220
330
550
660
1,100
1,500
2,000
2,200

Pool

-190.
-186.

-209.
-209.
-208.
-208.
-207.
-203.
-196.
-194.

-214.
-214.
-213.
-213.
-211.
-207.
-202.
-200.

-217.
-217.
-217.
-216.
-215.
-212.
-207.
-205.

-218.
-217.
-217.
-216.
-216.
-215.
-214.
-214.

=1
[

WO OO WO LULNDNULMOWULE OOV OULONMNUVMOYOULTY OWwL

Flow

Control

Conduit
Conduit

Stage
of
Vortex
Develop-
ment

gouou
RPROO PPRRIIOO WOPOROOO WO PP €—— OO0

EHEEEA

D E

D E
Slug Flow
Slug Flow
Slug Flow
Slug Flow




Hydraulic Gradients and Pressures,

Table 2

Tvpe 1 Design

Piezometer

& ————L

Discharge 1,100 cfs,

Hydraulic

Gradient

E1l

Pool E1 -190.1

1 -220.
2 -220.
3 -221.
4 -223.
5 -226.
6 -229.
6a -253
6b -253.
7 -283
8 -283
9 -289.
10 ~-298.
11 -310.
12 -304.
13 -304.
14 -304.
15 -304.
16 -304.
17 -304.
18 -304.
19 -304.
20 -304
21 -304.
22 -304.
23 -304.
24 -304.
25 -304.
26 -305.
27 -305
28 -305.
29 -305.
30 -305.
31 -305.
32 -305.
33 -305
34 -305.
35 -305.
36 -305
37 -305.
38 -305

00
00
24
31

21
32

.40

40

.25
.25

88
50

00
30
35
40

45
50
55
60

65

.70

75
80

85
90
95
00

.05

10
15
20

25
30

.35

40
45

.50

55

.60

(Continued)

-190.
-190.
-190.
-190.

-191.
-191.
-192.
-192.

-193.
-191.
-193.
-193.

-193.
-192.
-193.
-193.

-193.
-193.
-193.
-193.

-193.
-193.
-193.
-193.

-193.
-193.
-193.
-193.

-193.
-193.
-193.
-194.

-194.
-194.
-194.
-194.

-194.
-194.,
-194.
-194.

N OPFWN WO N LNWWE WRNNRN ONNO COCOWOUN NDNNUD VWO o

Pressure
ft

30.
30.
30.
32.

35.
37.
61.
61.

90.
91.
96.
105.

117.
112,
111.
111.

111.
111.
111.
111.

111.
111.
111.
111.

111.
111.
111.
111.

111.
111.
111.
111.

111.
111.
111.
110.

110.
110.
110.
110.

WOOWW 00O HFWNW NWWE WOUEFEW WHPrWW PNOHFO VVOESH NRNDNONBEN NOOO
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Table 2 (Continued)

Hydraulic
Gradient
El

-195.
-195.
-195.
-195.

-195.

NO OO

[N

Discharge 1,300 cfs, Pool El1 -189.9

Piezometer

No. S
39 -305.65
40 -305.70
41 -305.75
42 -305.80
43 -305.85

1 -220.00

2 -220.00

3 -221.24
4 -223.31

5 -226.21

6 -229.32

6a -253.40

6b -253.40

7 -283.25

8 -283.25

9 -289.88
10 -298.50
11 -310.00
12 -304.30
13 -304.35
14 -304.40
15 ~-304.45
16 -304.50
17 -304.55
18 -304.60
19 -304.65
20 -304.70
21 -304.75
22 -304.80
23 -304.85
24 -304.90
25 -304.95
26 -305.00
27 -305.05
28 -305.10
29 -305.15
30 -305.20
31 -305.25
32 -305.30
33 -305.35
34 -305.40

-190.
-190.
-190.
-190.

-191.
-192.
-192.
-192.

-194.
-192.
-194.
-193.

-192.
-194.
-194.
-194.

-194.
-194.
-194.
-194.

-194.
-194.
-195.
-195.

-195.
-195.
-195.
-195.

-195.
-195.
-195.
-195.

-195.
-195.
-195.
-195.

WO IOV FPONDO COWVWYW ONSNON PLOWLWY QUMD ool 0L OO

(Continued)

Pressure
ft

110.
110.
110.
110.

110.

~NOY 00 N

30.
30.
31.
32.

34.
36.
60.
60.

89.
90.
95.
105.

117.
110.
110.
110.

109.
109.
109.
109.

109.
109.
109.
109.

109.
109.
110.
109.

109.
109.
109.
109.

109.
109.
109.
109.

LU U0 OVONY 0o 0OWOYw OHPEPRHE B OOV N OO
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Table 2 (Continued)

Hydraulic

Piezometer Gradient

No. EL El
35 -305.45 -196.0
36 -305.50 -196.0
37 -305.55 -196.3
38 -305.60 -196.2
39 -305.65 -196.4
40 -305.70 -196.4
41 -305.75 -196.4
42 -305.80 -196.6
43 -305.85 -196.6
Discharge 1,500 cfs, Pool El -190.2

1 -220.00 -190.0
2 -220.00 -190.0
3 -221.24 -190.6
4 -223.31 -191.3
5 -226.21 -192 .4
6 -229.32 -193.9
6ba -253 .40 -194.1
6b -253.40 -194 .1
7 -283.25 -196.5
8 -283.25 -193.8
9 -289.88 -197.0
10 -298.50 -195.9
11 -310.00 -194.5
12 -304.30 -196.1
13 -304.35 -196.6
14 -304.40 -196.7
15 -304.45 -196.7
16 -304.50 -196.7
17 -304.55 -197.0
18 -304.60 -197.2
19 -304.65 -197.5
20 -304.70 -197.5
21 -304.75 -197.7
22 -304.80 -197.8
23 -304 .85 -197.8
24 -304.90 -197.8
25 -304.95 -197.5
26 -305.00 -198.3
27 -305.05 -198.4
28 -305.10 -198.5
29 -305.15 -198 .4
30 -305.20 -198.6

(Continued)

Pressure
ft

109.
109.
109.
109.

109.
109.
109.
109.

109.

w NPPW R,

30.
30.
31.
32.

33.
35.
59.
59.

86.
90.
92.
102.

116.
108.
107.
108.

108.
108.
107.
108.

107.
107.
107.
107.

107.
107.
107.
106.

106.
106.
106,
106.

N AN NUk = OMNON POV NNONWL YO ULTO WWEsoo OO0 O

(Sheet 3 of 7)



Table 2 (Continued)

Hydraulic
Piezometer Gradient
No. El Fl
31 -305.25 -198.6
32 -305.30 -198.6
33 -305.35 -198.6
34 -305.40 -198.8
35 -305.45 -199.2
36 -305.50 -199.2
37 -305.55 -199.4
38 -305.60 -199 .4
39 -305.65 -199.6
40 -305.70 -199.6
41 -305.75 -199.7
42 -305.80 -199.9
43 -305.85 -200.0
Discharge 1,750 cfs, Pool E1 -189.7
1 -220.00 -190.0
2 -220.00 -190.2
3 -221.24 -191.0
4 -223.31 -191.4
5 -226.21 -192.8
6 -229.32 -194.8
ba -253.40 -195.0
6b -253.40 -195.0
7 -283.25 -197.7
8 -283.25 -194.8
9 -289.88 -198.2
10 -298.50 -196.4
11 -310.00 -195.3
12 -304.30 -197.4
13 -304.35 -197.8
14 -304.40 -197.9
15 -304.45 -197.9
16 -304.50 -197.9
17 -304.55 -198.0
18 -304.60 -198.2
19 -304.65 -198.4
20 -304.70 -198.6
21 -304.75 -198.7
22 -304.80 -198.8
23 -304.85 -198.8
24 -304.90 -198.9
25 -304.95 -198.9
26 -305.00 -199.0

(Continued)

Pressure
ft

106.
106.
106.
106.

106,
106.
106.
106.

106.
106.
106.
105.

105.

W WOWHFRFHFRPE NDNNWWw O~

30.
30.
30.
31.

33.
34,
58.
58.

85.
88.
91.
102.

115.
106.
106.
106.

106.
106.
106.
106.

106.
106.
106.
106.

106.
106.
106.
106.

OO OHFHW PO OO HEFNUODY PP ONOOO
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Table 2 (Continued)

Hydraulic
Piezometer Gradient
No. El El
27 -305.05 -199.2
28 -305.10 -199.3
29 -305.15 -199 .4
30 -305.20 -199.6
31 -305.25 -199.7
32 -305.30 -199.8
33 -305.35 -199.9
34 -305.40 -200.1
35 -305.45 -200.2
36 -305.50 -200.3
37 -305.55 -200.4
38 -305.60 -200.3
39 -305.65 -200.7
40 -305.70 -200.8
41 -305.75 -200.7
42 -305.80 -201.2
43 -305.85 -201.3
Discharge 2,000 c¢fs, Pool E1 -190.0
1 -220.00 -190.0
2 -220.00 -190.0
3 -221.24 -191.2
4 -223.31 -192.1
5 -226.21 -194.0
6 -229.32 -196.5
6a -253.40 -196.8
6b -253.40 -197.0
7 -283.25 -200.8
8 -283.25 -196.5
9 -289 .88 -201.5
10 -298.50 -199.8
11 -310.00 -197.2
12 -304.30 -200.0
13 -304.35 -201.0
14 -304 .40 -200.5
15 -304 .45 -200.9
16 -304.50 -201.1
17 -304.55 -201.2
18 -304.60 -201.1
19 -304.65 -201.3
20 -304.70 -201.5
21 -304.75 -201.8
22 -304.80 -201.9

(Continued)

Pressure
ft

105.
105.
105.
105.

105.
105.
105.
105.

105.
105.
105.
105.

104.
104.
105.
104.

104.

AN O W WNNW WUl O WO

30.
30.
30.
31.

32.
32.
56.
56.

82.
86.
88.
98.

112.
104.
103.
103.

103.
103.
103.
103.

103.
103.
103.
102.
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Table 2 (Continued)

Hydraulic
Piezometer Gradient
No. El El
23 -304.85 -202.0
24 -304.90 -202.5
25 -304.95 -201.9
26 -305.00 -202.5
27 -305.05 -202.5
28 -305.10 -202.6
29 -305.15 -202.7
30 -305.20 -202.8
31 -305.25 -203.0
32 -305.30 -203.5
33 -305.35 -203.4
34 -305.40 -203.9
35 -305.45 -203.9
36 -305.50 -204.3
37 -305.55 -204.1
38 -305.60 -204.3
39 -305.65 -205.0
40 -305.70 -206.0
41 -305.75 -204.1
42 -305.80 -205.0
43 -305.85 -205.1
Discharge 2,140 cfs, Pool EL -189.0
1 -220.00 -190.0
2 -220.00 -189.9
3 -221.24 -191.2
4 -223.31 -192.0
5 -226.21 -194.1
6 -229.32 -196.8
6a -253.40 -196.9
6b -253.40 -197.1
7 -283.25 -201.2
8 -283.25 -196.5
9 -289.88 -201.5
10 -298.50 -200.1
11 -310.00 -197.9
12 -304.30 -200.3
13 -304.35 -201.0
14 -304.40 -201.0
15 -304.45 -201.3
16 -304.50 -201.3
17 -304.55 -201.5
18 -304.60 -201.8

(Continued)

Pressure
ft

102.
102.
103.
102.

102.
102.
102.
102.

102.
101.
102.
101.

101.
101.
101.
101.

100.

99.
101.
100.

100.

0 ONNSN WOUNOY MO W P~PUTUTOY VO

30.
30.
30.
31.

32.
32.
56.
56.

82.
86.
88.
98.

112.
104.
103.
103.

103.
103.
103.
102.
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Table 2 (Concluded)

Piezometer

No.

19
20
21
22

23
24
25
26

27
28
29
30

31
32
33
34

35
36
37
38

39
40
41
42

43

-304.
-304.
-304.
-304.

-304.
-304.
-304.,
-305.

-305.
-305.
-305.
-305.

-305.
-305
-305.
-305.

-305.
-305.
-305.
-305.

-305.
-305.
-305
-305.

-305.

El

65
70
75
80

85
90
95
00

05
10
15
20

25

.30

35
40

45
50
55
60

65
70

.75

80

85

Hydraulic

Gradient

El

-202.
-202.
-202.
-202.

-202.
-202.
-202.
-203.

-203.
-203.
-203.
-203.

-204.,
-204.
-204.
-204.

-204.
-204.
-205.
-205.

-205.
-206.
-205.
-205.

-205.

O N WPH U NN OWXR ANWWN UMW WhEdWw N

Pressure
ft

102,
102.
102.
102.

102.
102.
102.
101.

101.
101.
101.
101.

101.
101.
101.
100.

100.
100.
100.
100.

100.

99.
100.
100.

100.
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Hydraulic Gradients and Pressures,

Table 4

Type 2 Design

Hydraulic
Piezometer Gradient Pressure
No. El El ft
Discharge 500 cfs, Pool E1 -190.7
la -214 .50 -190.0 23.5
1b -214.50 -191.0 23.5
1 -220.00 -190.7 29.3
2 -220.00 -190.9 30.1
3 -221.24 -190.0 31.2
4 -223.31 -190.1 33.2
5 -226.21 -190.2 36.0
6 -229.32 -190.4 38.9
6ba -253.40 -191.1 62.3
6b -250.40 -191.3 62.4
7 -281.25 -190.9 90.4
8 -281.25 -190.6 90.7
9 -289.88 -191.0 98.9
10 -298.50 -191.0 107.5
11+ -310.00 0 0
12 -304.30 -191.0 113.3
13 -304 .35 -191.1 113.3
14 -304.40 -191.1 113.3
15 -304.45 -191.2 113.3
16 -304.50 -191.2 113.3
17 -304.55 -191.2 113.4
18 -304.60 -191.3 113.3
19 -304.65 -191.4 113.2
20 -304.70 -191.3 113.4
21 -304.75 -191.4 113.4
22 -304.80 -191.4 113.4
23% -304.85 0 0
4% -304.90 0 0
25 -304.95 -191.5 113.4
26 -305.00 -191.5 113.5
27% -305.05 0 0
28 -305.10 -191.5 113.6
29 -305.15 -191.5 113.6
30 -305.20 -191.5 113.7
31 -305.25 -191.6 113.7
32 -305.30 -191.5 113.8
33 -305.35 -191.5 113.9
34 -305.40 -191.5 113.9
(Continued)
*

Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient
No. El El
35 -305.45 -191.5
36 -305.50 -191.5
37 -305.55 -191.6
38 -305.60 -191.6
39 -305.65 -191.7
40 -305.70 -191.7
41 -305.75 -191.7
42 -305.80 -191.8
43 -305.85 -191.8
Discharge 1,100 cfs, Pool E1 -190.9
la -214.50 -191.8
1b -214.50 -191.6
1 -220.00 -190.9
2 -220.00 -190.3
3 -221.24 -190.9
4 -223.31 -191.2
5 -226.21 -191.8
6 -229.32 -192.7
6ba -253.40 -193.0
6b -250.40 -193.0
7 -281.25 -193.9
8 -281.25 -192.5
9 -289.88 -192.3
10 -298.50 -193.8
11* -310.00 0
12 -304.30 -193.8
13 -304.35 -194.3
14 -304.40 -194.2
15 -304.45 -194.3
16 -304.50 -194 .4
17 -304.55 -194 .4
18 -304.60 -194.5
19 -304.65 -194.5
20 -304.70 -194.6
21 -304.75 -194.6
22 -304.80 -194.6
23 -304.85 -194.0
24% -304.90 0
25 -304.95 -194.7
26 -305.00 -194.8

(Continued)

Pressure
ft

113.
114.
114,
114,

113.
114.
114.
114,

114.

= O OWwW OO0 0w

114.
114.
29.
29.

30.
32.
34.
36.

60.
60.
87.
88.

97.

104.
0

110.

110.
110.
110.
110.

110.
110.
110.
110.

110.
110.
110.

~Noy cobPREEEs oW NN

O NN b pd =N =N O

110.
110.2

w

* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient Pressure
No. _E1 El __ft
27 -305.05 -194.9 110.2
28 -305.10 -195.1 110.0
29 -305.15 -195.2 109.9
30 -305.20 -195.3 109.9
31 -305.25 -195.4 109.9
32 -305.30 -195.4 109.9
33 -305.35 -195.5 109.9
34 -305.40 -195.6 109.8
35 -305.45 -195.7 109.8
36 -305.50 -195.7 109.8
37 -305.55 -195.8 109.8
38 ~-305.60 -195.9 109.7
39 -305.65 -195.9 109.7
40 -305.70 -195.9 109.8
41 -305.75 -195.9 109.9
42 -305.80 -196.1 109.7
43 -305.85 -196.1 109.8
Discharge 1,300 cfs, Pool E1 -190.3
la -214.50 -191.2 23.3
1b -214.50 -191.1 23.4
1 -220.00 -190.3 29.5
2 -220.00 -190.2 29.8
3 -221.24 -191.1 30.1
4 -223.31 -191.3 32.0
5 -226.21 -192.1 34.1
6 -229.32 -193.2 36.1
6a -253.40 -193.3 60.1
6b -250.40 -193.3 60.1
7 -281.25 -194.8 86.4
8 -281.25 -193.1 88.2
9 -289.88 -195.0 94.9
10 -298.50 -193.4 105.1
11% -310.00 0 0
12 -304.30 -194.6 109.7
13 -304.35 -195.0 109.4
14 -304.40 -195.0 109 .4
15 -304.45 -195.0 109.4
16 -304.50 -195.0 109.5
17 -304.55 -195.0 109 .6
18 -304.60 -195.1 109.5
(Continued)
* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient Pressure
No. __E1 EL __ft
19 -304.65 -195.2 109.4
20 -304.70 -195.3 109.4
21 -304.75 -195.3 109.4
22 -304.80 -195.4 109.4
23% -304 .85 0 0
24% -304.90 0 0
25 -304.95 -195.6 109.4
26 -305.00 -195.8 109.2
27% -305.05 0 0
28 -305.10 -195.9 109.2
29 -305.15 -195.9 109.2
30 -305.20 -196.0 109.2
31 -305.25 -196.2 109.1
32 -305.30 -196.2 109.1
33 -305.35 -196.2 109.2
34 -305.40 -196.4 109.0
35 -305.45 -196.5 108.9
36 -305.50 -196.6 108.9
37 -305.55 -196.7 108.9
38 -305.60 -196.8 108.8
39 -305.65 -196.8 108.8
40 -305.70 -196.7 109.0
41 -305.75 -196.8 108.9
42 -305.80 -197.0 108.8
43 -305.85 -197.0 108.9
Discharge 1,500 cfs, Pool E1 -189.8

la -214.50 -191.2 23.3
1b -214 .50 -191.8 22.7

1* -220.00 0 0

2 -220.00 -190.2 29.8

3 -221.24 -191.2 30.0
4 -223.31 -191.6 31.7

5 -226.21 -192.8 33.4

6 -229.32 -194.0 35.3
6a -253.40 -193.8 59.1
6b -250.40 -193.8 59.1

7 -281.25 -196.2 85.1

8 -281.25 -193.9 87.4

9 -289.88 -196.6 93.3
10 -298.50 -196.1 102 .4

(Continued)

* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient Pressure
No. El El ft
11* -310.00 0 0
12 -304.30 -195.9 108 .4
13 -304.35 -196.1 108.3
14 -304.40 -196.1 108.3
15 -304.45 -196.2 108.3
16 -304.50 -196.2 108.3
17 -304.55 -196.3 108.3
18 -304.60 -196.4 108.2
19 -304.65 -196.8 108.6
20 -304.70 -196.9 107.8
21 -304.75 -196.9 107.9
22 -304.80 -197.0 107.8
23% -304.85 0 0
24% -304.90 4] 0
25 -304.95 -197.0 107.9
26 -305.00 -197.2 107.8
27% -305.05 0 0
28 -305.10 -197.3 107.8
29 -305.15 -197.3 107.8
30 -305.20 -197.5 107.7
31 -305.25 -197.7 107.6
32 -305.30 -197.8 107.5
33 -305.35 -197.9 107.5
34 -305.40 -198.0 107 .4
35 -305.45 -198.1 107 .4
36 -305.50 -198.2 107.3
37 -305.55 -198.3 107.3
38 -305.60 -198.3 107.3
39 -305.65 -198.5 107.1
40 -305.70 -198.5 107.2
41 -305.75 -198.5 107.3
42 -305.80 -198.9 106.9
43 -305.85 -198.9 107.0
Discharge 1,750 cfs, Pool E1 -190.5

la -214.50 -191.7 22.8
1b -214.50 -191.0 23.5

1 -220.00 -190.5 29.7

2 -220.00 -190.8 31.0

3 -221.24 -190.6 30.6
4 -223.31 -191.3 32.0

(Continued)

* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient Pressure

No. El El ft

5 -226.21 -192.7 33.5

6 -229.32 -194.5 34.8
6a -253.40 -195.9 57.5
6b -250.40 -195.9 57.5

7 -281.25 -197.6 83.7

8 -281.25 -194.2 87.1

9 -289 .88 -197.8 92.1
10 -298.50 -196.4 102.1
11* -310.00 0 0
12 -304.30 -197.6 106.7
13 -304.35 -198.1 106.3
14 -304 .40 -198.1 106.3
15 -304.45 -198.3 106.1
16 -304.50 -198.4 106.1
17 -304.55 -198.5 106.1
18 ~-304.60 -198.9 105.7
19 -304.65 -199.1 105.5
20 -304.70 -199.2 105.5
21 -304.75 -196.2 105.6
22 -304.80 -199.4 105.4
23% -304.85 0 0
24% -304.90 0 0
25 -304.95 -199.6 105.4
26 -305.00 -200.2 104.8
27 -305.05 -200.3 104.8
28 -305.10 -200.5 104 .6
29 -305.15 -200.7 104 .4
30 -305.20 -200.8 104 .4
31 -305.25 -201.1 104.2
32 -305.30 -201.2 104.1
33 -305.35 -201.2 104.2
34 -305.40 -201.6 103.8
35 -305.45 -201.8 103.6
36 -305.50 -201.9 103.6
37 -305.55 -202.1 103.5
38 -305.60 -202.2 103.4
39 -305.65 -202.6 103.0
40 -305.70 -202.7 103.0
41 -305.75 -202.7 103.1
42 -305.80 -203.0 102.8
43 -305.85 -203.1 102.8

(Continued)

* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient
No El El
Discharge 2.000 c¢fs, Pool E1 -190.1
la -214.50 -190.9
1b -214.50 -190.8
1 -220.00 -190.1
2 -220.00 -190.0
3 -221.24 -191.6
4 -223.31 -192.5
5 -226.21 -195.0
6 -229.32 -197.6
6ba -253.40 -197.0
6b -250.40 -197.1
7 -281.25 -201.9
8 -281.25 -197.0
9 -289 .88 -202.4
10 -298.50 -200.0
11* -310.00 0
12 -304.30 -201.9
13 -304.35 -201.8
14 -304.40 -201.7
15 -304 .45 -201.9
16 -304.50 -201.9
17 -304.55 -202.1
18 -304.60 -202.5
19 -304.65 -202.6
20 -304.70 -202.9
21 -304.75 -202.8
22 -304.80 -203.0
23% -304.85 0
24% -304.90 0
25 -304.95 -203.7
26 -305.00 -203.9
27%* -305.05 0
28 -305.10 -204.1
29 -305.15 -204.0
30 -305.20 -204.3
31 -305.25 -204.8
32 -305.30 -204.7
33 -305.35 -204.8
34 -305.40 -205.1
35 -305.45 -205.2
36 -305.50 -205.3

(Continued)

Pressure
ft

23.
23.
29.
31.

29.
30.
31.
31.

56.
56.
79.
84,

87.

98.
0

102.

102.
102.
102.
102.

102.
102.
102.
101.

101.

101.
0
0

101.
101.
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100.
100.
100.
100.
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* Piezometer malfunction.
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Table 4 (Continued)

Hydraulic
Piezometer Gradient Pressure
No. El El ft
37 -305.55 -205.6 100.0
38 -305.60 -205.6 100.0
39 -305.65 -205.9 99 .7
40 -305.70 -205.9 99.8
41 -305.75 -206.0 99.8
42 -305.80 -206.3 99.5
43 -305.85 -206.5 99 .4
Discharge 2,140 cfs, Pool E1 -189.5
la -214.50 -190.5 24 .0
1b -214.50 -190.0 24.5
1 -220.00 -189.5 29.5
2 -220.00 -189.8 31.2
3 -221.24 -191.0 30.2
4 -223.31 -192.0 31.3
5 -226.21 -194.5 31.7
6 -229.32 -197.3 32.0
6ba -253.40 -197.3 56.1
6b -250.40 -197.5 55.9
7 -281.25 -201.7 79.6
8 -281.25 -196.7 84.6
9 -289 .88 -202 .4 87.5
10 -298.50 -200.3 98.2
11* -310.00 0 0
12 -304.30 -200.8 103.5
13 -304.35 -201.7 102.7
14 -304 .40 -201.7 102.7
15 -304 .45 -201.8 102.6
16 -304.50 -201.9 102.6
17 -304.55 -202.0 102.6
18 -304.60 -202.6 102.0
19 -304.65 -202.6 102.0
20 -304.70 -203.0 101.7
21 -304.75 -203.1 101.6
22 -304.80 -203.2 101.6
23% -304.85 0 0
24% -304.90 0 0
25 -304.95 -204.0 100.9
26 -305.00 -204.5 100.5
27% -305.05 0 0
28 -305.10 -204.7 100.4
(Continued)
* Piezometer malfunction.
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Table 4 (Concluded)

Piezometer

No.

29
30
31
32

33
34
35
36

37
38
39
40

41
42
43

-305.
-305
-305.
-305.

-305.
-305.
-305.
-305.

-305.
-305.
-305.
-305.

-305.
-305.
-305.

El

15

.20

25
30

35
40
45
50

55
60
65
70

75
80
85

Hydraulic

Gradient

El

-204.,
-205.
-205.
-205.

-205.
-205.
-205.
-206.

-206.
-206.
-206.
-206.

-206.
-207.
-207.

NNY OJWkH OWEWw NOOO

Pressure
ft

100.
100.
100.
100.

100.
100.
99.
99.

99.
99.
98.
98.

98.
98.
98.
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Table 5

Separate and Total Losses in Intake

I

2g

Total entrance loss.

* Determined from hydraulic gradients based on piezometers located in shaft at sta 0+00 and
-253.4.
Determined from hydraulic gradients based on piezometers 18-36 extended to sta 0+23.

Type 2
Energy Energy
i i * i *%
et _m ferter  smemows % M % X R .
2,140 -189.5 -190.8 -194.7 1.3 3.9 5.2 0.197 0.591 0.788
2,000 -190.1 -191.3 -195.0 1.2 3.7 4.9 0.208 0.642 0.850
1,750 -190.5 -191.5 -193.4 1.0 1.9 2.9 0.227 0.431 .658
1,500 -189.8 -190.6 -192.4 0.8 1.8 2.6 0.247 0.556 0.803
1,300 -190.3 -190.9 -192.1 0.6 1.2 1.8 0.247 0.494 0.741
1,100 -190.9 -191.3 -192.3 0.4 1.0 1.4 0.230 0.575 0.805
500 -190.7 -190.8 -191.0 0.1 0.2 0.3 0.270 0.541 0.811
Average 0.232 0.547 0.779
v2
Note: EE = Loss in feet from the water surface to el -253.4 in riser shaft.
V2
Eg = Loss in feet from el -253.4 to just inside the conduit entrance (sta 0+23).
V2



Outlet Manifold Hydraulic Gradients

Table 6

Piezometer

No. El

Discharge 30,000 cfs,

Hydraulic

Gradient

El

Pressure
ft

Reservoir Water-Surface E1 -190.0

1 -249,
2 =249,
3 -265,
4 -264,
5 -265.
6 -265
6ba -247.
6b -247 .
7 -265.
8 -265.
9 -265.
10 -265.
11 -265.
12 -265.
13 -265.
14 -265.
15 -265.
16 -265.
17 -265.
18 -265.
19 -265.
20 -265.
21 -265.
22 -265.
23 -265.
24 -265.
25 -265.
26 -265.
27 -265.
28 -265.
29 -265
30 -265.
31 -265.
32 -265.
33 -265.
34 -265
35 -265,
36 -265.
37 -265.
38 -265.

00
00
50
70

50

.50

00
00

50
50
50
50

50
50
50
50

50
50
50
50

50
50
50
50

50
50
50
50

50
50

.50

50

50
50
50

.50

50
50
50
50

(Continued)

-165.
-164.
-149.
-183.

-187.
-171.
-171.
-173.

-173.
-174.
-174.
-173.

-174.
-174.
-174.,
-174.

-174.
-175.
-175.
-175.

-175.
-175.
-175.
-175.

-175.
-175.

175.
-175.

175.
175.
175.
176.

176.
176.
176.
176.

176.
176.
176.
176.
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83.
84.
116.
81.

78.
94,
76.
Th.

92.
91.
91.
92.

91.
91.
91.
91.

90.
90.
90.
90.

90.
90.
90.
90.

90.
90.
90.
90.

90.
90.
90.
89.

89.
89.
89.
89.

89.
89.
89.
89.
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Table 6 (Continued)

cfs, Reservoir Water-Surface E1 -190.0

Piezometer

No. ___E1
39 -265.50
40 -265.50
41 -265.50
42 -265.50
43 -265.50
L4 -265.50
45 -265.50
46 -265.50
47 -265.50
48 -265.50
49 -265.50
50 -265.50
51 -265.50
52 -265.50
53 -265.50
54 -265.50
Discharge 50,000

1 -249.00
2 -249 .00
3 -265.50
4 -264.70
5 -265.50
6 -265.50
6ba -247 .00
6b -247.00
7 -265.50
8 -265.50
9 -265.50
10 -265.50
11 -265.50
12 -265.50
13 -265.50
14 -265.50
15 -265.50
16 -265.50
17 -265.50
18 -265.50
19 -265.50
20 -265.50
21 -265.50
22 -265.50
23 -265.50

(Continued)

Hydraulic
Gradient Pressure
El ft
175.0 90.5
177.2 88.3
177.0 88.5
176.7 88.8
176.2 89.3
176.0 89.5
176.0 89.5
175.5 50.0
175.3 90.2
-174.0 91.5
-173.9 91.6
-173.8 91.7
-173.5 92.0
-173.0 92.5
-173.0 92.5
-172.9 92.6
-143.0 106.0
-145.0 104.0
-115.0 150.5
-172.0 92.7
-173.0 92.5
-145.0 120.5
-141.0 106.0
-191.2 99.0
-147.0 118.5
-152.0 113.5
-148.0 117.5
-148.0 117.5
-149.0 116.5
-150.0 115.5
-150.0 115.5
-150.0 115.5
-151.0 114.5
-152.0 113.5
-152.0 113.5
-152.0 113.5
-152.5 113.0
-153.0 112.5
-153.0 112.5
-153.0 112.5
-153.5 112.0
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Table 6 (Continued)

cfs,

Piezometer

No. __E1
24 -265.50
25 -265.50
26 -265.50
27 -265.50
28 -265.50
29 -265.50
30 -265.50
31 -265.50
32 -265.50
33 -265.50
34 -265.50
35 -265.50
36 -265.50
37 -265.50
38 -265.50
39 -265.50
40 -265.50
41 -265.50
42 -265.50
43 -265.50
44 -265.50
45 -265.50
46 -265.50
47 -265.50
48 -265.50
49 -265.50
50 -265.50
51 -265.50
52 -265.50
53 -265.50
54 -265.50
Discharge 70,000

1 -249.00
2 -249.00
3 -265.50
4 -264.70
5 -265.50
6 -265.50
6a -247.00
6b -247.00

Hydraulic
Gradient Pressure
El ft
-154.0 111.5
-154.0 111.5
-154.5 111.0
-153.5 112.0
-154.0 111.5
-154.0 111.5
-155.0 110.5
-155.0 110.5
-155.0 110.5
-155.0 110.5
-156.0 109.5
-156.0 109.5
-155.0 110.5
-156.0 109.5
-155.7 109.8
-156.0 109.5
-155.5 110.0
-155.0 110.5
-156.0 109.5
-155.5 110.0
-155.5 110.0
-154.5 111.0
-154.0 111.5
-154.0 111.5
-154.7 110.8
-150.0 115.5
-152.0 113.5
-151.0 114.5
-150.0 115.0
-150.0 115.0
-149.0 116.5
Reservoir Water-Surface E1 -190.0

-108.25 140.7
-112.75 136.2
-70.50 195.2
-160.25 104 .4
-175.0 90.5
-100.0 165.5
-85.0 -180.5
-105.0 142.0

(Continued)

* Piezometer malfunction.
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Table 6 (Continued)

Hydraulic
Piezometer Gradient Pressure

No. El El ft

7 -265.50 -105.0 160.0

8 -265.50 -103.5 162.0

9 -265.50 -105.5 165.0
10 -265.50 -107.5 158.0
11 -265.50 -109.0 156.5
12 -265.50 -110.0 155.5
13 -265.50 -109.5 156.0
14 -265.50 -110.5 155.0
15 -265.50 -114.5 151.0
16 -265.50 -114.5 151.0
17 -265.50 -115.5 150.0
18 -265.50 -116.0 149.5
19 -265.50 -117.0 148.5
20 -265.50 -116.0 149.5
21 -265.50 -116.5 149.0
22 -265.50 -117.5 148.0
23 -265.50 -118.0 147.5
24 -265.50 -118.5 147.0
25 -265.50 -118.0 147.5
26 -265.50 -117.5 148.0
27 -265.50 -116.5 149.0
28 -265.50 -117.5 148.0
29 -265.50 -117.0 148.5
30 -265.50 -117.5 148.0
31 -265.50 -119.0 146.5
32 -265.50 -119.0 146.5
33 -265.50 -119.0 146.5
34 -265.50 -119.5 146.0
35 -265.50 -119.0 146.5
36 -265.50 -119.0 146.5
37 -265.50 -119.0 146.5
38 -265.50 -119.0 146.5
39 -265.50 -118.5 147.0
40% -265.50 0 0
41 -265.50 -118.0 147.5
42 -265.50 -117.5 148.0
43 -265.50 -115.5 150.0
44 -265.50 -115.5 150.0
45 -265.50 -115.0 150.5
46 -265.50 -118.0 147.5
47 -265.50 -119.5 146 .0

(Continued)

* Piezometer malfunction.
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Table 6 (Continued)

Hydraulic
Piezometer Gradient Pressure
No. El El ft
48 -265.50 -118.0 147 .5
49 -265.50 -117.0 148.5
50 -265.50 -123.5 142.0
51 -265.50 -116.0 149.5
52 -265.50 -114.0 151.5
53 -265.50 -112.5 153.0
54 -265.50 -111.0 154.5
Discharge 85,000 cfs. Reservoir Water-Surface E1 -190.0
1 -249 .00 -50.0 159.0
2 -249 .00 -94.0 155.0
3 -265.50 -60.0 189.0
4 -264.70 -185.5 79.2
5 -265.50 -169.0 96.5
6 -265.50 -90.5 175.0
6a -247.00 -75.0 172.0
6b -247.00 -96.5 150.5
7 -265.50 -92.0 173.0
8 -265.50 -89.5 176.0
9 -265.50 -90.5 175.0
10 -265.50 -93.0 172.5
11 -265.50 -93.5 172.0
12 -265.50 -94.5 171.0
13 -265.50 -94.0 171.5
14 -265.50 -95.8 169.7
15 -265.50 -97.8 167.7
16 -265.50 -99.0 166.5
17 -265.50 -100.0 165.5
18 -265.50 -99 .5 166.0
19 -265.50 -99.0 165.7
20 -265.50 -100.3 165.2
21 -265.50 -101.0 164.5
22 -265.50 -102.0 163.5
23 -265.50 -102.5 163.5
24 -265.50 -103.0 162.5
25 -265.50 -104.5 161.0
26 -265.50 -103.0 162.5
27 -265.50 -102.0 163.5
28 -265.50 -104.0 161.5
29 -265.50 -103.5 162.0
30 -265.50 -104.5 161.0
31 -265.50 -105.0 160.5
32 -265.50 -150.5 160.0

(Continued)

(Sheet 5 of 6)



Table 6 (Concluded)

Hydraulic
Piezometer Gradient Pressure

No. El El ft
33 -265.50 -106.0 159.5
34 -265.50 -106.0 159.5
35 -265.50 -106.5 159.0
36 -265.50 -106.7 158.8
37 -265.50 -105.5 160.0
38 -265.50 -105.5 160.0
39 -265.50 -105.5 160.0
40% -265.50 0 0

41 -265.50 -104.5 161.0
42 -265.50 -104 .7 160.8
43 -265.50 -102.0 163.5
44 -265.50 -104.0 161.5
45 -265.50 -102.0 163.5
46 -265.50 -104.0 161.5
47 -265.50 -104.0 161.5
48 -265.50 -104.0 161.5
49 -265.50 -100.0 165.5
50 -265.50 -97.0 160.5
51 -265.50 -98.5 167.0
52 -265.50 -97.5 168.0
53 -265.50 -96.5 150.5
54 -265.50 -95.5 170.0
%* Piezometer malfunction

(Sheet 6 of 6)



Table 7

OQutlet Manifold Head Loss and Loss Coefficients

Energy
Gradient V2
Reservoir at Upstream Head Loss He _e Loss Coeffi-
Discharge  Water-—Surface End of ft of 2g X N
cient K #*%
cfs El Manifold* Water ft e
30,000 -190.0 -165.5 24.5 7.5 3.27
50,000 -190.0 -126.3 63.7 20.7 3.08
70,000 -190.0 —-60.1 129.9 40.9 3.18
85,000 -190.0 -27.1 162.9 59.9 2.72
* Based on piezometers in manifold (Plate 13).
H
*% Loss coefficient K - —° where H 1is head loss in ft and V2/2g is
V2/2g : e e

velocity head in ft at the upstream end of the manifold (Plate 13).



Photo 1. Flow conditions; weir control; no cover plate;
discharge 500 cfs, pool el -217.7

Photo 2. Flow conditions; weir control; no cover plate;
discharge 1,000 cfs; pool el -216.1



Photo 3. Flow conditions; weir control; no cover plate;
discharge 2,000 cfs, pool el -216.1

Photo 4. Flow conditions; transition from weir to conduit control;
no cover plate; discharge 2,000 cfs, pool el -214.0



Photo 5. Flow conditions; conduit control; no cover plate;
discharge 2,000 cfs, pool el -190.0

Photo 6. Flow conditions; conduit control; no cover plate;
discharge 2,000 cfs, pool el -160.0



Photo 7. Flow conditions; conduit control; with cover plate;
discharge 2,000 cfs, pool el -190.0
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e. Reservoir water—surface el ~275.0

f. Reservoir water—surface el -265.0

Photo 12. (Sheet 3 of 4)
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a. Reservoir water—surface el -275.0

b. Reservoir water—-surface el —-266.0

Photo 13. Flow conditions, outlet manifold; discharge 85,000 cfs;
exposure time 20 sec (prototype) (Sheet 1 of 4)
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g. Reservoir water-surface el -190.0

h. Reservoir water—surface el -260.0

Photo 13. (Sheet 4 of 4)
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