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A TURBULENCE MODEL FOR RECIRCULATING FLOW 

PART I: INTRODUCTION 

Background 

1. Although turbulence may often go unnoticed, it affects most human 

activities that involve air and water. If there were no such thing as turbu- 

lence, airplanes and automobiles would experience less drag, but sugar would 

take much longer to dissolve in coffee. In any case, when it comes to build- 

ing machines whose operation depends on fluid flow, designers often have 

little choice but to accept and accommodate the effects of turbulence. 

2. Turbulence occurs whenever there is too little viscosity to prevent 

small disturbances from growing and disrupting a laminar flow. Turbulent flow 

contains eddies of so many different sizes that a complete representation of 

the flow is usually impractical on a discrete grid. For some purposes, how- 

ever, it is possible to approximate the behavior of the larger eddies if the 

influence of the smaller eddies is adequately captured by a turbulence model. 

In this context, the turbulence consists of all eddies that are too small to 

be resolved by discretization. 

3. If one averages the Navier-Stokes equations over a time interval 

that is short compared with the periods of the large eddies, but long compared 

with those of the turbulence, shear stresses arise that are proportional to 

the time-averaged products of the fluctuating velocity components. These are 

called Reynolds stresses, and the process of time averaging is called Reynolds 

averaging. Strictly speaking, the complete turbulent velocity distribution 

must be known in order to calculate the Reynolds stresses exactly, but engi- 

neers have always used empirical approximations based on mean (Reynolds- 

averaged) velocities. The simplest of these, suggested by Boussinesq (1877), 

consists of supplementing the molecular viscosity with an eddy viscosity in 

the Newtonian expression for shear stress. Turbulence models that use this 

approximation are called eddy-viscosity models, and they are classified 

according to the manner in which they obtain the eddy viscosity from the 

properties of the mean flow. 

4 .  Kinematic molecular viscosity has units of length squared divided by 

time, and kinematic eddy viscosity can be made proportional to any combination 



of turbulence quantities that yields these same units. Algebraic eddy- 

viscosity models extract the necessary turbulence quantities directly from the 

local mean flow, without accounting for their transport by the flow itself. 

Since they involve no equations for turbulence transport, these models are 

also called zero-equation models. In contrast, one-equation models include a 

transport equation for one of the necessary turbulence quantities, with local 

algebraic approximations for the rest. Two-equation models add a transport 

equation for a second quantity, and so on. 

5. The k-E turbulence model (Launder and Spalding 1974) has become the 

most widely used of the two-equation eddy-viscosity models. Here the symbol 

k represents the turbulence energy, and E the dissipation rate of the tur- 

bulence energy. Taking these as the primary turbulence quantities, each of 

which is governed by a transport equation, the eddy viscosity is then propor- 

tional to the ratio k2/e . By solving the two governing equations for k 

and E along with the Reynolds-averaged equations for conservation of mass 

and momentum, one can obtain mean-flow approximations that are useful within 

certain limits. The standard k-E model works fairly well for two-dimensional 

(2-D) flow without recirculation, as long as reliable mechanisms exist for 

generating shear stress and vorticity along the boundaries. 

6. The adjustments needed to accommodate recirculation are quite dif- 

ferent from those needed to resolve near-wall influences in a turbulent bound- 

ary layer (Patel, Rodi, and Scheurer 1985). That is, adjustments for recircu- 

lation offer little help in determining the point at which flow separation 

actually occurs, but they may be needed to avoid premature reattachment there- 

after. Accurate prediction of the separation point on a smooth wall requires 

a grid fine enough to resolve the separating boundary layer, as well as spe- 

cial measures to approximate the distribution of shear stress near the wall. 

Purpose and Scope 

7. The present investigation concerns modifications needed to make the 

k-6 model work for 2-D recirculating flow, where the standard model may over- 

predict the eddy viscosity. The overprediction may arise from too much energy 

or from too little dissipation, and the remedy is to adjust the governing 

equations in a way that corrects them for recirculation but leaves them essen- 

tially unaffected for unidirectional shear flow. This is accomplished by 



constructing dimensionless functions of mean-flow and turbulence quantities 

that can be used either for damping turbulence production or for enhancing 

growth of the dissipation rate. Previous efforts have employed functions of 

k , E , and mean-flow curvature (Launder, Pridden, and Sharma 1977) to modify 

the standard equations. The function proposed herein employs mean-flow veloc- 

ity and vorticity instead of curvature. 

8. Near-wall turbulence correction and boundary layer separation lie 

outside the scope of the study reported here, which is concerned mainly with 

flow behavior after separation. Fortunately, computed flows and real turbu- 

lent flows separate whenever they encounter sharp corners, sb there is no 

difficulty in predicting separation points for sharp-cornered boundaries. 

Given the separation point, a discrete flow-solver with an adequate turbulence 

model should be able to predict the downstream reattachment point and the 

predominant features of the recirculating flow, at least for simple 

geometries. 

9. Part I1 of this report outlines the governing equations for the mean 

flow and the standard turbulence model, and Part I11 discusses Lne associated 

boundary conditions. Part IV offers proposed modifications to the k-E model; 

Part V describes the numerical algorithms used to discretize and solve the 

equations; Part VI enumerates the reasons for choosing the backstep as a test 

problem; Part VII presents comparisons of mean-flow computations with experi- 

mental results: and Part VIII sets forth conclusions and recommendations. 



PART 11: GOVERNING EQUATIONS 

10. The governing equations for the mean flow are the Reynolds-averaged 

Navier-Stokes equations. For 2-D incompressible flow, these are the equations 

for conservation of mass and momentum, given respectively by 

where 

V = gradient operator 

u = vector velocity - 
t = time 

T = divergence of the Reynolds-averaged stress tensor - 

p = pressure 

p = density 

An underbar indicates vectors and a subscript t indicates a time derivative. 

The cartesian x- and y-components of T are, respectively, 

where 

u = eddy viscosity 

u,v = x- and y-components of y 

x,y = cartesian coordinates 

and the subscripts x and y indicate spatial derivatives. (Molecular vis- 

cosity is neglected in Equations 3 and 4.) The eddy viscosity is related to 

the turbulence energy k and the turbulence dissipation rate E by 

where C, is a dimensionless empirical coefficient. 

11. The governing equations for k and 6 are semi-empirical 

transport equations, each of which has the form 



Advection = Production - Dissipation + Diffusion 

In this context, advection means transport by the mean flow; production means 

creation from the large eddies; dissipation means frictional loss through the 

small eddies; and diffusion means the spreading that occurs because of eddy 

viscosity. In the standard k-E model, the governing equations are 

In each case, the first term on the right is the production term, which is 

proportional to 

The second term on the right in Equations 6 and 7 is the dissipation term, and 

the third term is the diffusion term. The standard set of dimensionless em- 

pirical coefficients (Launder and Spalding 1974) is 

12. With suitable boundary conditions for u , v , p , k , and E , 

Equations 1 ,  2, 6, and 7 are sufficient for calculating 2-D flow within the 

limitations of the k-E turbulence model. The STREMR finite-difference code 

(Bernard 1989) was used to discretize and solve the governing equations for 

the work reported here. Starting with potential flow for the initial velocity 

and small uniform values for the initial turbulence quantities, STREMR obtains 

steady-state solutions (if they exist) by marching forward in time. 



PART 111: BOUNDARY CONDITIONS 

13. In the STREMR code, velocity components normal to the boundaries 

are held fixed for inlets (nonzero mass inflow) and solid walls (zero mass 

inflow/outflow) and computed by a discrete radiation condition for outlets 

(nonzero mass outflow). The total flow rate remains constant, as do the 

individual flow rates through each inlet and outlet. In a given time-step, 

the velocity normal to any boundary segment is either constant (for inlets and 

solid walls) or determined by neighboring velocities in the previous time-step 

(for outlets). STREMR uses a staggered marker-and-cell grid, with mass flux 

components defined on cell faces and pressures defined at cell centers. This 

grid arrangement, along with the specification of all boundary-normal mass 

fluxes at the beginning of each time-step, allows the normal component of the 

pressure gradient to be set to zero on all boundaries. 

14. In principle, both the normal and tangential components of velocity 

should be zero on all solid boundaries. For the normal component this means 

no mass flux through the boundary, and the resulting effect on the rest of the 

flow can be obtained without special refinement of the grid. In the case of 

the tangential component, however, the velocity gradient may be so sharp that 

accurate resolution becomes difficult near the boundary itself. Thus, even 

with zero tangential velocity specified on a wall, the discrete solution may 

still fail to approximate the near-wall velocity distribution and its effect 

on the rest of the flow. 

15. Solid walls pose more of a problem than merely that of grid resolu- 

tion. Since turbulence dies off very near a wall, turbulence models must also 

account for wall proximity. If this is not adequately done, a flow calcula- 

tion may be invalid whether or not the grid is fine enough to resolve the 

velocity gradient. In general, wall effects have to be accommodated either by 

using special near-wall turbulence models (Patel, Rodi, and Scheurer 1985) or 

by using empirical formulas to estimate near-wall turbulence quantities (Rodi 

1980). 

16. Near-wall turbulence models are usually adaptations of familiar 

models like the k-E model, in which coefficients and functions are modified or 

added with decreasing distance from a wall. In a boundary layer or other 

wall-bound shear flow, their purpose is to represent the viscous sublayer, 

which is so thin and so close to the wall that the shear stress created by 



molecular viscosity v, is comparable with that created by turbulence. In a 

boundary layer with no pressure gradient, the viscous sublayer is said to lie 

in the range 

where yt is the dimensionless normal distance from a horizontal wall, 

and u, is the friction velocity. This latter quantity is related to the 

tangential shear stress 7 .  on the wall by 

T w  = pu; (11) 

and the wall shear stress is given in terms of the molecular viscosity and the 

velocity distribution by 

with the velocity derivative evaluated the wall (y = 0) . In order to cal- 

culate r w  from scratch, one must use a near-wall turbulence model, along 

with the mean-flow equations, to calculate the velocity distribution imposed 

on the viscous sublayer by the no-slip condition. Otherwise it is necessary 

to assume a near-wall velocity distribution and, by implication, a value for 

the wall shear stress. 

17. Perhaps the most commonly used near-wall velocity profile is the 

logarithmic law of the wall, 

where n is von Karman's constant (about 0.418), and E is a roughness fac- 

tor (about 9.75 for hydraulically smooth walls). This empirical formula pro- 

vides a convenient relation between friction velocity, local flow velocity, 

molecular viscosity, and wall roughness. It is reliable in the range 30 < yf 

< 150 when there is no pressure gradient, but it has often been used to give 

a rough approximation for u, even when there is a pressure gradient (Rodi 



1980). There are also modified versions of the law of the wall that take the 

pressure gradient into account, but they offer little improvement over Equa- 

tion 13 for separating or recirculating flow (Chen and Pate1 1988). 

18. In general, near-wall flow cannot be calculated independently of 

the flow at large, because the interaction of the two usually determines the 

location of separation and reattachment points. Wherever there is a sharp 

convex corner, however, the flow will always separate, and the downstream 

recirculating flow may be only weakly dependent on near-wall conditions for 

some distance prior to reattachment. In these circumstances it may be possi- 

ble to model the effect of turbulence in the recirculating flow, even when the 

wall shear stress is poorly approximated. 

19. In the present work, the standard law of the wall (Equation 13) 

provides the needed relation between friction velocity and flow velocity adja- 

cent to solid walls. In addition to a nonzero value for the shear stress on 

the wall, this gives boundary values for the turbulence energy, 

and also the turbulence dissipation rate, 

These equations represent token approximations for the actual boundary condi- 

tions, but they are acceptable if the flow separates at a sharp corner and 

recirculates strongly thereafter. 

20. Small, fixed values of k and 6 are specified along inlets, and 

Neumann conditions (zero normal derivatives) are imposed on k and E along 

outlets and slip boundaries. This combination of boundary conditions (includ- 

ing the law of the wall) helps to preserve numerical stability and keeps the 

computed solution from drifting. 



PART IV: MODIFICATIONS TO THE STANDARD MODEL 

21. Various authors (e.g., Chapman and Kuo 1985) have reported that the 

k-E model underpredicts reattachment lengths for separated flow, but the rea- 

son for this underprediction is not clear. One possibility is that the stan- 

dard model is unsuitable for recirculating flow because it assumes the normal 

components of the Reynolds stress tensor to be isotropic. Indeed, in strongly 

three-dimensional (3-D) flow, anisotropic normal stresses do induce secondary 

(helical) mean currents that cannot be predicted with isotropy alone. In two 

dimensions, however, 3-D secondary currents exist only as part of the turbu- 

lence, and normal-stress anisotropy may or may not have a strong influence on 

the mean flow. Speziale (1987) has developed a nonlinear k-E model that in- 

cludes anisotropic normal stresses and gives somewhat improved predictions for 

2-D and 3-D recirculating flow. 

22. Rodi (1980) has observed that the standard model breaks down with 

large departures from equilibrium; i.e., when the rate of turbulence energy 

production greatly exceeds the rate of dissipation, and vice versa. To im- 

prove nonequilibrium flow predictions, Rodi has proposed an empirical correc- 

tion factor for the eddy viscosity, based on the average ratio of production 

to dissipation for the mean flow. The use of averaging does not seem appro- 

priate for recirculating flow, however, because the ratio of production to 

dissipation can change abruptly with position. 

23. Whatever the reason, the standard k-E model seems consistently to 

underpredict reattachment lengths for backsteps. The amount of discrepancy 

varies somewhat with channel width and with the numerical scheme used for 

calculation, but the model invariably produces too much eddy viscosity in the 

recirculating zone. To counter this tendency, one then seeks an empirical 

adjustment that reduces the viscosity for separated flow, but not necessarily 

for unseparated flow. The adjustment should rely on a scaling parameter that 

is some dimensionless combination of turbulence and mean-flow quantities, 

which should be easy to implement in the standard k-E equations. 

24. Drawing on an analogy between buoyancy and curvature proposed by 

Bradshaw (1969), Launder, Priddin, and Sharma (1977) have formulated an ad- 

justment to the k-E model based on the streamline radius of curvature. This 

correction, known as the LPS correction, was intended for boundary layers; but 

it has also been used for recirculating flow by Durst and Rastogi (1980) and 



by Tingsanchali and Maheswaran (1990) among others. In this procedure, one 

first defines a turbulent Richardson number (based on curvature instead of 

buoyancy), 

where r is the streamline radius of curvature, given by 

The Richardson number is then used to obtain a curvature-corrected value Ci 

for the coefficient C 2  , 

where C, is a dimensionless curvature correction coefficient. 

25. With Equation 18, a positive value for Ri reduces the decay rate 

for the dissipation, which increases the dissipation rate and reduces the 

turbulence energy. A negative value has the opposite effect. 

26. Although the LPS correction improves predictions in some cases, it 

is not universally satisfactory for 2-D calculations (Rodi and Scheurer 1983). 

Apparently something more than curvature alone is needed for improving the k-E 

model in two dimensions. As an alternative parameter, consider the eddy 

Reynolds number RE defined as follows: 

The length scale 6 ,  is obtained from the mean-flow velocity and vorticity 

through the relation 

When Equations 19 and 20 are combined with Equation 5 ,  the expression for RE 

becomes 

This quantity is a convenient parameter for tuning the production and dissipa- 

tion of turbulence, because it increases with velocity and dissipation rate, 



but decreases with energy and with energy production (which increases roughly 

as the square of vorticity). 

27. In the range of yf associated with the law of the wall, RE 

takes values in excess of 30. If the k-E model is to retain its applicability 

for wall-bound shear flows, any correction factor based on the eddy Reynolds 

number should approach unity at values of RE near 30 or more. With this in 

mind, consider the following adjustment for the coefficient C 2  in the 

standard model: 

Equation 22 exhibits the desired behavior for RE > 30 as long as the empiri- 

cal coefficient R, is given values of about 10 or less. In this context, 

R, represents a cutoff value for RE , below which C i  rapidly approaches 

C, . Above R, , the altered coefficient Ci gradually approaches the 

standard C2 . 
28. For future reference, Equation 22 will be called the eddy Reynolds 

number (ERN) correction for the k-6 turbulence model. Aside from their depen- 

dence on vorticity and streamline curvature, the main qualitative difference 

between the ERN and LPS corrections is that LPS may either increase or de- 

crease the decay rate for dissipation, while ERN can only decrease it. These 

adjustments represent two of many plausible corrections that one might propose 

for the standard model. Both are easy to implement, and neither adds signifi- 

cantly to the computer time required for the standard model. 



PART V: NUMERICAL ALGORITHMS 

29. The STREMR computer code ordinarily uses only the MacCormack 

predictor-corrector scheme (MacCormack 1969; Bernard 1989) to solve the momen- 

tum equation (Equation 2), but for this study a special version of the code 

was set up to use an upwind predictor-corrector scheme as well. To discretize 

the advective terms in Equation 2, the MacCormack solver uses forward spatial 

differencing in the predictor phase of each time-step, and backward differenc- 

ing in the corrector (or vice versa). The upwind solver uses two-point upwind 

differencing in both the predictor and corrector phases. The MacCormack 

scheme is second-order accurate (at best) in space, while the upwind scheme is 

only first-order accurate. By running the same calculations with these two 

different numerical methods, one can roughly ascertain the degree to which 

model predictions may be algorithm dependent. 

30. Both versions of STREMR use a single-step (predictor phase only) 

upwind scheme for solving the k-E equations, regardless of the method employed 

for the momentum equation. The code begins with potential flow for the mean 

flow and with small, uniform values for k and E . It then marches through 

time toward a steady state (if one exists). The same time-step size is used 

for every cell on the grid, but this is updated every 10 time-steps to the 

maximum value allowed by numerical stability considerations. 

31. In each time-step, the eddy viscosity is first calculated using 

existing values of k and E . This viscosity is then used to compute new 

values for u , v , k , and E . The pressure needed to maintain conserva- 

tion of mass is obtained from the solution to a Poisson equation in each pre- 

dictor and corrector phase. 



PART VI: TEST PROBLEM 
6 

3 2 .  The flow past a backstep (abrupt channel expansion) has been chosen 

to test the proposed ERN correction for the k-E turbulence model. In select- 

ing a test problem, one seeks to eliminate or reduce the influence of compet- 

ing mechanisms that create confusion and render calculations inconclusive. In 

the case of the backstep, the flow is essentially unidirectional and parallel 

to the wall when it separates at the channel expansion, regardless of the 

upstream velocity distribution. 

3 3 .  The flow downstream of a backstep is not completely insensitive to 

upstream conditions, but it is less sensitive than that for a forestep (abrupt 

contraction) or a block (contraction followed by expansion). With the fore- 

step and the block, the upstream velocity governs the flow separation angle at 

the contraction, which likewise governs the recirculating flow downstream. 

Turbulence model tests for these configurations will be inconclusive unless 

both the upstream and downstream flow can be accurately predicted from 

scratch. The backstep eliminates much of the upstream dependence, and this 

makes it more convenient for model tests in recirculating flow. 

3 4 .  After the flow separates at the corner, it recirculates for some 

distance in the wake of the backstep. At some point, however, the flow again 

becomes unidirectional (no backflow), and this is called the point of reat- 

tachment. The channel expansion ratio h2/hl is the main parameter that con- 

trols the reattachment point, where hl and hz are the depths upstream and 

downstream of the expansion in the xy-plane (Figure 1). The step height h 

is the difference between hz and hl: 

If horizontal position x is measured from the backstep, and x, is the re- 

attachment length, then x,/h increases with h2/hl . Although Reynolds num- 

ber also has some influence on reattachment, it is less important than the 

expansion ratio (Durst and Tropea 1981). 



Figure I. Computational grid for channel expansion 
with h,/h, = 1.1 



PART VII: COMPUTED RESULTS 

35. STREMR calculations were executed for uniform inflow into a channel 

expansion (Figure 1) with the law of the wall imposed on the lower (backstep) 

boundary and perfect slip on the upper (symmetry) boundary. The computational 

domain was a rectangle with a length of 30h and a width of llh, which was 

divided into a grid with 200 spaces in the x-direction and 40 spaces in the 

y-direction. Channels with different expansion ratios were created by block- 

ing out rows of cells along the upper boundary of the rectangle. Although the 

grid spacing was uneven far from the backstep, the grid cells in the recircu- 

lation zone were uniformly square (Ax = Ay = h/10) in all cases. The expan- 

sion ratio was varied from 1.1 to 2.0, but the conventional (molecular) 

Reynolds number was held fixed at % = 5 x lo4 , where 

and uo is the inflow velocity. 

36. Figure 2 shows streamlines computed for an expansion ratio of 1.48 

with the MacCormack flow-solver and the ERN turbulence correction. Note that 

for R, = 0 the ERN correction reduces to the standard k-E model. It is evi- 

dent from these results that the adjusted turbulence model predicts greater 

reattachment lengths and stronger recirculation than the standard model. 

37. In Figure 3 the turbulence-energy predictions for h,/h, = 1.48 

are compared with the measurements made by Kim, Kline, and Johnston (1980) for 

h,/h, = 1.50 . The ERN correction (R, = 5) produces less energy than the 

standard model (R, = 0) upstream of the reattachment point (x,/h = 7.5), where 

the ERN predictions are more nearly in agreement with the experimental data. 

Downstream of reattachment, the predicted energies are almost the same. A 

similar comparison with the velocity data (Figure 4) shows that the ERN cor- 

rection yields a stronger and longer backflow than the standard model, and 

that the ERN predictions are generally in better agreement with the 

measurements. 

38. The agreement between calculation and observation in Figures 3 and 

4 is about as good as can be expected with the MacCormack solver and the ERN 

turbulence correction; it is unlikely that before-the-fact predictions will be 



a. Computational grid 

b. Standard model (R, = 0) 

c. ERN correction (R, = 5) 

Figure 2. Streamlines computed with MacCormack flow-solver for 
channel expansion with h,/h, = 1.48 
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much better than the results shown here. It may often be possible to find a 

value for R, that forces agreement for a specific case after the fact (as 

was done here), but that does not imply that the same will be achieved in 

general. Thus, it is important to investigate the performance of the model 

for other expansion ratios, and also the extent to which predictions may vary 

with an alternative numerical scheme and turbulence correction. 

39. Durst and Tropea (1981) have compiled experimental measurements of 

x,/h from fifteen different sources (including their own work) for 1 < h2/h, 

< 2 with Reynolds numbers in the range 2.5 x lo3 < R, 5 1.3 x lo5 . These - 
are the data with which model results for reattachment length will be com- 

pared. 

40. Identical sets of calculations were done for each of four possible 

combinations of flow-solver (MacCormack or upwind) and turbulence correction 

(ERN or LPS). The predicted reattachment lengths x, are compared with ex- 

perimental data in Figures 5 and 6. Note that the turbulence model reduces to 

the standard k-6 model when R, = 0 with the ERN correction, and when C, = 0 

with the LPS correction. 

41. The standard model (R, - 0) consistently underpredicts the reat- 
tachment length with both flow-solvers, but the underprediction is greater 

with the upwind scheme. This is to be expected, because the MacCormack solver 

produces less numerical diffusion than does the upwind. Even so, the upwind 

does not fare badly in comparison with the MacCormack, except perhaps for 

expansion ratios near unity. 

42. The ERN correction pushes the predictions in the right direction, 

achieving the best overall results for R, = 5 with the MacCormack scheme 

(Figure 5). The end points of the predicted curve are about right, but the 

slope is rather different from that indicated by the experiments for expansion 

ratios near unity. The observed reattachment lengths climb sharply in the 

range 1.1 < h2/h, < 1.3 and gently otherwise. The predicted values, on the 

contrary, exhibit a gradual increase with expansion ratio in the range between 

1.1 and 2.0 . This discrepancy may reflect some inconsistency in the experi- 

mental data, or (more likely) it may imply that RE is not a perfectly satis- 

factory parameter for adjusting the turbulence model. 

43. The predicted results with the LPS correction (Figure 6) are gener- 

ally worse than those with the ERN correction. With the upwind flow-solver, 

the LPS calculations were numerically stable for all values of C, in the 
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range 0.0 < C, < 0.2 and for all expansion ratios in the range 

1.1 < h2/h1 < 2.0 . On the other hand, with the MacCormack flow-solver 

(Figure 6a) these calculations failed to converge for h,/hl > 1.4 when C, 

was 0.1 or greater. Even with the upwind scheme, the LPS reattachment curves 

(Figure 6b) are less in agreement with the data than are the ERN curves 

(Figure 5b). 



PART VIII: CONCLUSION 

44. The proposed ERN (eddy Reynolds number) correction reduces the 

turbulence energy and eddy viscosity generated by the standard k-E model in 

the presence of recirculation. This consistently improves flow predictions 

for backsteps (channel expansions) with expansion ratios between 

1 and 2, even though the computed reattachment lengths do not follow precisely 

the curve outlined by the experimental data. 

45. The LPS (curvature) correction proposed by Launder, Priddin, and 

Sharma (1977) does not work in general for recirculating flow. The upwind 

flow-solver converges with the LPS correction (Equation 18), but the predicted 

variation of reattachment length with channel expansion ratio has the wrong 

shape. The MacCormack solver converges with LPS when C, = 0.05 or less, but 

it may encounter difficulties with convergence or stability when C, = 0.10 

or more. In any case, to tune the ERN correction (Equation 22) properly for 

the k-E model, one should always use experimental data like those of Durst 

and Tropea (1981) to help find R, for the particular numerical flow-solver 

being used. No two algorithms will give precisely the same results, and some- 

times the disparity in predictions can be significant. 

46. The ERN turbulence correction should be viewed as a tentative 

adjustment which is helpful in two dimensions, but not necessarily in three. 

This is not to say that the ERN is without merit as a scaling parameter in 

three dimensions, but that other parameters may be necessary along with a more 

advanced turbulence model than an eddy-viscosity model. Even in two dimen- 

sions, the ERN correction merely represents an empirical extension that im- 

proves predictions; it does not offer a better understanding of the turbulence 

itself. 

47. Within the limitations of 2-D flow, there still remains the problem 

of resolving near-wall effects well enough that reliable predictions can be 

made for separation and reattachment on boundaries of arbitrary shape. Once 

this problem has been adequately solved, the k-E model may prove quite useful 

for general hydrodynamic and aerodynamic applications in two dimensions. 
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