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PREFACE

This report was prepared by the Coastal Engineering Research Center
(CERC) at the US Army Engineer Waterways Experiment Station (WES) and is a
product of the Los Angeles and Long Beach Harbors Model Enhancement (HME)
Program. The HME Program has been conducted jointly by the Ports of Los
Angeles and Long Beach (LA/LB); the US Army Engineer District, Los Angeles
(SPL); and WES. The purpose of the HME Program has been to provide state-of-
the-art engineering tools to aid in port development. In response to the
expansion of oceanborne world commerce, the LA/LB are conducting planning
studies for harbor development in coordination with SPL. Ports are a natural
resource, and enhanced port capacity is vital to the Nation’s economic well-
being. In a feasibility study being conducted by SPL, the LA/LB are proposing
a well-defined and necessary expansion to accommodate predicted needs in the
near future. The Corps of Engineers (CE) will be charged with the responsi-
bility for providing deeper channels and determining the effects of this
construction on the local environment. Changes in tidal circulation and
harbor flushing need to be examined to determine how expansion and channel
deepening will affect water quality in the harbors and local vicinity.

The investigation was conducted during the period February 1987 through
September 1988 by personnel of the Coastal Processes Branch (CPB) and Coastal
Oceanography Branch (COB), Research Division (RD), and the Wave Processes
Branch (WPB), Wave Dynamics Division (WDD). The CPB personnel involved in the
study were Dr. S. Rao Vemulakonda, Messrs. Bruce A. Ebersole and David J.
Mark, and Mses. Lucia W. Chou and Brenda D. Grimes under the direct
supervision of Dr. Steven A. Hughes, former Chief, CPB; Dr. Lyndell Z. Hales,
Acting Chief, CPB; and Mr. H. Lee Butler, Chief, RD. Also involved in the
study was Mr. Paul D. Farrar of COB, under the direct supervision of
Dr. Edward F. Thompson, Chief, COB, and Mr. Butler. The WPB personnel
involved were Messrs. Ernest R. Smith and William C. Seabergh under the direct
supervision of Mr. Douglas G. Outlaw, Chief, WPB, and Mr. C. E. Chathanm,
Chief, WDD. Overall CERC management of the HME Program was furnished by
Messrs. Outlaw and Seabergh. Personnel of the Prototype, Measurement and
Analysis Branch (PMAB), Engineering Development Division (EDD), who provided
analyzed prototype data were Messrs. David D. McGehee, Andrew Morang, and
James P. McKinney under the direction of Mr. J. Michael Hemsley, Acting Chief,
PMAB, and Mr. Thomas W. Richardson, Chief, EDD. This study was under the



general supervision of Dr. James R. Houston, Chief, CERC, and Mr. Charles C.
Calhoun, Jr., Assistant Chief, CERC.

During the course of the study, liaison was maintained between WES, SPL,
and the Ports. Mr. Dan Muslin, followed by Mr. Angel P, Fuertes, was SPL
point of contact. Mr. John Warwar and Ms. Lillian Kawasaki, Port of Los
Angeles, and Mr. Michael Burke, followed by Mr. Rich Weeks and Dr. Geraldine
Knatz, Port of Long Beach, were LA/LB points of contact and provided
invaluable assistance.

Commander and Director of WES during publication of this report was

COL Larry B. Fulton, EN. Dr. Robert W. Whalin was Technical Director.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
acres 0.00404686 square kilometres
cubic feet 0.028317 cubic metres
degrees (angle) 0.01745329 radians
feet 0.3048 metres
knots 0.5144 metres per second
miles (US statute) 1.6093 kilometres
miles per hour (mph) 0.4470 metres per second
square feet 0.0929 square metres
square miles 2.590 square kilometres



LOS ANGELES AND LONG BEACH HARBORS
MODEL ENHANCEMENT PROGRAM

THREE-DIMENSTONAL NUMERICAL MODEL TESTING OF TIDAL CIRCULATION

PART I: INTRODUCTION

1. Los Angeles and Long Beach (LA/LB) Harbors are located adjacent to
each other on the California coast and share a common breakwater system that
encloses one of the largest harbor systems in the world (Figure 1). The
harbors' history since the 1890's has largely been one of continuous expansion
to meet the demands of world commerce and national security. As larger ships
were built, channels were deepened to accommodate them. Dredged material
could then be used to create additional landfill for facilities. Thousands of
acres of landfill have created the harbor complex as it exists today
(Figure 2).

2. Once again a dramatic increase in activity is predicted for the
Pacific trade routes. To meet the trade needs of the Nation, the Ports of Los
Angeles and Long Beach have undertaken a long-range cooperative planning
effort known as the 2020 Plan. A special study known as the Operations,
Facilities, and Infrastructure (OFI) Study was performed to determine the
cargo handling requirements necessary. The study determined a variety of
phased plans that could accommodate future needs. Incorporated in the plans
are 2,400 acres” of new landfill and 600 acres of new development on existing
land. Thirty-eight new terminals are planned along 7 miles of deep-draft ship
channels. Also included are systems of highway and rail connectors and

intermodal container transfer facilities.

Objective

3. The purpose of the study described in this report is to determine
three-dimensional (3-D) hydrodynamics of tidal and wind-driven circulation for

the existing harbors and to demonstrate model use in investigating a Phase 1

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 5.
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configuration of a plan determined by the OFI study and selected by the ports.
This objective will be accomplished by applying a state-of-the-art, 3-D
numerical hydrodynamic model. The model results also will be used to drive a
separate water quality model that will determine the effects of the plan on

water quality in the harbor complex.

Report Organization

4. Part II of this report reviews previous tidal circulation modeling
work performed by the US Army Engineer Waterways Experiment Station (WES) for
1A/LB Harbors and examines the rationale for model enhancement. In Part III,
the hydrodynamic model is discussed, and its relationship to the water quality
model is examined. Part IV reviews the available field data used to calibrate
and verify the hydrodynamic model. Part V discusses model calibration and
verification for existing conditions. Part VI discusses the testing of plan,
Part VII describes hydrodynamic simulations for water quality modeling, and

Part VIII contains a summary of results and conclusions.



PART II: PREVIOUS STUDIES

5. A physical model of the LA/LB Harbors was constructed at WES in 1973
to study tidal circulation and harbor oscillations. The initial tidal
circulation test results were reported by McAnally (1975). The 1:400
horizontal scale, 1:100 vertical scale distorted model was calibrated with a
limited prototype data set. Some difficulties were encountered in the
measurement of the relatively low velocities that normally exist in the
harbors inside the breakwaters. A satisfactory calibration was obtained, and
the model was tested for a number of plan conditions. However, during the
mid-1970’s, computer modeling of hydrodynamics was becoming more feasible as
computer memory and speed increased. It was felt that computer modeling would
be an alternative approach to modeling tidal circulation in harbors with
relatively low velocities (normally less than 1 ft/sec). Also, the physical
model was heavily used at the time to examine harbor resonance conditions for
wave periods in the 30- to 400-sec range.

6. During 1975-76, a numerical model was applied by WES to study tidal
circulation in the LA/LB Harbors. The model selected for use was a two-
dimensional (2-D), depth-averaged numerical model of the hydrodynamic
equations. This model neglected the vertical components of velocity and
acceleration, and the general 3-D governing hydrodynamic equations were
integrated over the water depth. 1In this way, 3-D geometry could be
considered. The model solved the governing equations using a finite differ-
ence approximation of the equations and an alternating direction semi-implicit
technique. Application to San Pedro Bay required use of a grid of 20,000
finite difference cells, each cell representing a 300-ft square of the harbor
region. The model reproduced a 25-hr prototype tide sequence and was applied
by Raney (1976a,b) and by Outlaw and Raney (1979) for plans that included a
proposed Outer Harbor oil terminal in the Port of Long Beach in conjunction
with a proposed Los Angeles Harbor deepening project. These studies indicated
that the plans resulted in only minor overall changes in tidal circulation in
LA/LB Harbors and that any changes were very local in nature.

7. Improvements, which increased numerical stability, were implemented
in the previously discussed model permitting reproduction of longer prototype
scenarios. Also, utilization of a stretched grid having the capability to be
smoothly varied permitted simulation of a complex planform by locally

increasing resolution. Figure 3 shows the grid as applied to LA/LB Harbors.

10
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Details of this model, known as the Waterways Experiment Station Implicit
Flooding Model (WIFM), can be found in Butler (1978a,b,c, and 1980). Outlaw”
was the first to apply this model to LA/LB Harbors when he studied the Los
Angeles Harbor deepening and creation of a 190-acre landfill adjacent to Fish
Harbor. The model was calibrated with prototype data measured in 1972,
Results indicated the channel deepening project had no substantial effect on
tidal elevation, phase, circulation, and flushing. Once again a 25-hr
prototype tide scenario was used.

8. The WIFM was used by Seabergh and Outlaw (1984) to study the 2020
Master Plan. Tidal scenarios used were for spring, mean, and neap tides; each
scenario was for a 70-hr duration. The version of WIFM used for this study
included the addition of the constituent transport equation (Schmalz 1983) so
that the dispersion of a conservative substance (a dye, for example) could be
followed over time. Results of this study indicated that a major Outer Harbor
landfill would create some minor redistribution of flow into and out of the
harbors, though no change in tidal range occurred. An interesting effect
noted was the change in net circulation in the Inner Harbor (i.e., Los Angeles
Harbor's Main Channel and Long Beach Harbor'’s Cerritos Channel). Existing net
circulation is east to west (i.e., from Long Beach toward Los Angeles), while
for the plan studied, net circulation became west to east. These net
circulations were about 10 and 17 percent, respectively, of the average flow
in the back channel. Another application of WIFM was made for the Port of Los
Angeles’ Deep Draft Dry Bulk Export Terminal, Alternative No. 6 (Seabergh
1985), in which a landfill was studied on the lLos Angeles side of the Outer
Harbor.

9. 1In all of these studies, the plans examined called for landfills in
different regions of the harbor complex. Associated with the landfills are
greater channel and harbor depths, which are necessary to accommodate larger
ships and to provide a source of material for the landfill by dredging.
Forecasted requirements indicate some portions of the harbors may have depths
as great as 90 ft, National Geodetic Vertical Datum (NGVD) of 1929. Currently
the average depth of the harbors is on the order of 40 ft. With increased
depths comes the possibility for greater variations in velocity, temperature,

and density with depth. Therefore, in order to better evaluate flow

* D. G. Outlaw, Memorandum for Record, 5 March 1985, "Analysis of Tidal
Circulation for Los Angeles and Long Beach Harbors Navigation Channel
Improvements," US Army Engineer Waterways Experiment Station, Vicksburg, MS.

12



conditions (and thus water quality) in the harbors, it is necessary to advance
to a 3-D modeling system, that is, a model that can resolve hydrodynamic and
water quality parameters at different depths in the water column. The
previous modeling efforts have been performed with depth-averaged models,
which have been effective in aiding understanding the harbors’ global hydro-
dynamics but cannot provide the detailed input required for a water quality

model study of a deep harbor where vertical variations are significant.

13



PART TII: COMPUTATIONAL MODEL

10. Harbor enhancements may affect water quality in the study area by
changing tidal circulation and harbor flushing patterns that presently exist.
Furthermore, channel deepening introduces the possibility that transported
contaminants will not be well-mixed within the water column. To determine the
vertical velocity distribution for investigating water quality, a 3-D hydro-
dynamic model is necessary. The model selected for simulating hydrodynamics,

CH3D, is based on the methodology presented in Sheng (1983).

Hydrodynamic Model

11. Model CH3D is a time-varying, 3-D hydrodynamic model for simulating
circulation affected by tide, wind, river inflow, and density currents induced
by salinity and/or temperature gradients. Assuming hydrostatic pressure
distribution and employing the eddy-viscosity concept, the basic equations can
be written for a right-handed coordinate system (Figure 4) as shown in

Figure 5. In the governing equations u , v , and w are the velocities in

Displaced Water
\ Surface

— = Bottom

\ N— Nominal Water Surface

Figure 4. Coordinate system

14
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X- , y- , and z-directions, respectively; £ 1is the Coriolis parameter
defined as 20 sin ¢ where ¢ 1is the latitude; p, 1is the reference
density; p 1s the pressure; g 1is the acceleration due to gravity; T 1is
the temperature; S 1is the salinity; Ay , Ky , and Dy are the horizontal
eddy coefficients; and A, , K, , and D, are the vertical eddy coefficients.
The nonlinear inertia terms and the advection terms have been written in
conservative forms. Source/sink terms may be included in Equations 3.5 and 3.6
(Figure 5) to account for such effects as radiation, precipitation, and
evaporation.

12. Boundary conditions at the water surface include specification of
the wind stress and heat flux and satisfying the kinematic and dynamic
conditions. At the bottom the boundary conditions include specification of
heat flux and use of a quadratic stress law.

13. Use of a vertical-stretching relationship (Figure 6) leads to a
smooth representation of the topography and the same number of vertical cells

in the shallow and deep regions of the water body.
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Figure 6. Vertical coordinate transformation
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14. The CH3D computer code can be used to simulate 2-D or 3-D unsteady
currents in Cartesian or curvilinear grids. To treat curvilinear grids, the
governing equations are transformed into a boundary-fitted coordinate system
(Figure 7). The resulting equations are very complex and will not be repeated
here.” To alleviate various problems experienced in similar model developments,
the dependent and independent variables are transformed into the new coordinate
system. Equations in transformed coordinates (£, », o,) are obtained in terms
of the contravariant velocity components. These components are locally
orthogonal to the grid lines permitting more accurate specification of

boundary conditions.

€« Elx,y) y'ty'(l'.x‘)
(o) or {p)
¢ qlxy) yx(l’ll)
3'
4. 2'
'l
Y. .Y,
L"" €. v,
PROTOTYPE TRANSFORMED

Figure 7. Boundary-fitted coordinate transformation

% Y. P. Sheng, 1986, "A Three-Dimensional Mathematical Model of Coastal,
Estuarine, and Lake Currents Using Boundary Fitted Grid," Draft Report
prepared for the WES, Vicksburg, MS.
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15. To facilitate a more efficient numerical scheme, an external-
internal mode-splitting technique is used. Numerical computation of the
internal mode, which is governed by the slower baroclinic vertical flow
structure dynamics, is separated from the computation of the vertically
integrated variables (external mode), which are governed by the fast
barotropic dynamics.

16. To apply a finite difference solution method, the study area is
approximated by a computational grid composed of a 3-D lattice network of
cells. Bathymetry and land-water interfaces, such as shorelines and break-
waters, are specified for each vertical column of cells. Flow field parameters,
such as velocities or surface elevations, are evaluated at each cell. In order
to improve model accuracy, mathematical mapping or transformation techniques
are applied independently to the horizontal and vertical grid coordinates.
The horizontal grid directions are mapped into a general curvilinear system.
This allows a greater density of cells in regions of rapid change while
coarser cell resolution can be used in the remainder of the grid.

17. In the external mode, the vertically averaged conservation of mass
and momentum equations are solved, using an alternating-direction algorithm
similar to that used by Butler and Sheng (1982), to obtain the vertically
integrated horizontal velocities and water surface elevations. The vertical
velocity distribution is resolved in the internal mode. Here an implicit-
explicit scheme is used to compute the vertically integrated perturbation

velocities.

Water Quality Interfacing

18. Because a different modeling framework is used for the hydrodynamic
(HM) and water quality models (WQM), proper interfacing of these models is
important. In most regions of the computational grid, the WQM does not
require the same resolution as the HM, and its grid overlays multiple layers
and lateral segments of the HM (Figure 8). This procedure reduces unnecessary
computational expense. When more than one HM cell is overlain by a WQM
segment, the flows for those cells are combined in a manner to provide a
single flow for each face of the WQM segment.

19. The WQM uses time steps larger than the HM. The fundamental

interfacing problem consists of processing the hydrodynamic output so that

18



advection and diffusion are accurately depicted in the WQM. Testing of the
HM/WQM interfacing is required to ensure that transport predicted by the HM is
maintained in the WQM. Tests consist of comparisons of the transport of a
conservative substance (dye) in both. These tests are reported in a companion
report (Hall 1990) to the present study. Supporting hydrodynamic runs will be

discussed in a later section of this report.
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PART IV: FIELD DATA REVIEW

20. Field data measurements are required for model calibration and
verification. Data taken prior to the present study were reviewed for
completeness and sufficiency for model validation. The first comprehensive
field measurements of tidal circulation in San Pedro Bay were performed in
1971-74 and reported in Pickett et al. (1975). Figure 9 shows locations where
tidal velocities and elevations were measured. This data set was used in
calibration of both physical and 2-D numerical hydrodynamic models. 1In the
summer of 1983, the National Ocean Service (NOS) conducted a comprehensive
current survey in the harbor complex at locations shown in Figure 10. After a
thorough review, it was found that additional data were needed to complete the
required calibration and verification of a fully 3-D numerical model of the
area. A study was conducted in the summer of 1987, which included collection
of currents with moored meters, tidal elevations, shipboard profile measure-
ments, a drogue study in the Outer Harbor, and a dye study at two locations in
the area. This effort is reported by McGehee, McKinney, and Dickey (1989) and
Meadows (1987). A short summary of the field data measurements follows.

21. As part of a comprehensive field data collection study, surface
elevations, currents, and velocity profiles were measured during June through
October 1987. The primary objective of the effort was to provide data for
calibration and verification of the 3-D circulation/transport model to be used
for investigating tidal circulation and supporting follow-on water quality
studies,

22. Eight pressure transducer tide gages were deployed during June
through October 1987 (Figure 11). Surface elevation data were collected at
3.75-min intervals. Data of sufficient quality and duration were recovered
from Tide Gages (TG) 1, 2, 3, 6, and 7. Tide Gages 1, 2, and 6, located
outside the breakwaters, are used to furnish boundary conditions to drive the
hydrodynamic model, whereas, TG 3 and 7, located inside the breakwaters are
used to check model results during calibration and verification. Figures 12
through 15 are example plots of tidal measurements at TG 1 and 3 for the
entire period of gage deployment as well as for the 2-day period of 7 to
9 August 1987. Figure 15 displays a substantial amount of seiching in the
Cerritos Channel gage, evidence of the subtidal l-hr oscillation occurring in
the Inner Harbor. The Inner Harbor acts as a resonance chamber for the

oscillations occurring in outer San Pedro Bay (Wilson et al. 1968). These
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outer bay oscillations were observed in all open coast gages as seen with
careful examination of Figure 14.

23. Eighteen in situ current meters were deployed at nine stations for
a l-month intensive data collection period during August 1987 (Figure 11).
Typically one to three current meters were deployed in a vertical string at a
current meter station. If there was only one meter at a station, it was
positioned at middepth, whereas if there were two or three meters, they were
located so as to measure surface, middepth, and/or bottom layer currents. Of
the eighteen meters deployed, data were recovered from thirteen. These data
were used in calibration and verification of the hydrodynamic model.

24, Current velocity profile ranges were taken during 6-14 August 1987
at major entrances to the harbor and interior channels (Figure 11). These
measurements were taken from a boat, using portable current meters of the
ducted impeller type, and typically were taken over 10 to 12 hr of a tidal
cycle. Details of these 1987 field data collection efforts are given in
McGehee, McKinney, and Dickey (1989).

25, In order to check for circulation patterns in the Outer Harbor, a
drogue study was conducted along with the measurement effort discussed in
paragraph 24. The technique used was the application of a tracking radar
system to map the Lagrangian movement of up to 10 passive drogue floats
deployed in the Outer Harbor. Each of the floats was equipped with a radar
reflector and had a subsurface drogue extending 5 m below the free surface.
This arrangement ensured the total drogue responded to the average currents in
the top 3-m layer of the water column (and was not unduly influenced by
surface winds, a common drawback of previous drogue studies). Simultaneously,
Fulerian current measurements (velocity measurements at a fixed station) of
the vertical velocity profile behind the drogues were taken. These
measurements helped to establish validity of the remote sensing technique.
The drogue data were used as supplemental data in checking the numerical model
results qualitatively. Details of the drogue study are reported by Meadows
(1987).
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PART V: MODEL CALIBRATION AND VERIFICATION

26. Numerical modeling of hydrodynamics and transport in three dimen-
sions is a highly complicated task. To complete a successful calibration and
verification of the model to observed data, several steps are necessary.

These include proper choice of model domain, examination and analysis of
available data to classify the dynamics of the study area, model resolution of
the important processes, accurate grid schematization (both horizontal and
vertical), development of appropriate initial and boundary conditions and
model input data streams, and performance of sensitivity tests on model

response to choice of grid resolution and key model coefficients.

Grid Selection

27. The CH3D model chosen for this study permits use of a curvilinear
grid for solving the time-varying hydrodynamics. Such a grid should be fitted
to conform horizontally to the irregular shoreline and ship channels of the
harbor complex. An auxiliary code is used to generate the boundary-fitted
horizontal curvilinear grid. Several attempts were made to generate accurate
engineering grids for San Pedro Bay. Available software for grid generation
proved inadequate to construct a practical grid for resolving the complex
geometry within the harbors for which the model algorithms would remain
stable. The primary problem was in connection with the development of highly
skewed computational grid cells. Further discussion can be found in Appendix A.

28. The CH3D model can use either a curvilinear or rectilinear grid for
resolving the horizontal domain. A successful and accurate grid (Figure 3)
was used in a previous study (Seabergh and Outlaw 1984) of San Pedro Bay. The
study area was represented by a smoothly varying rectilinear grid containing
12,032 grid cells (128 cells in the east-west direction and 94 cells in the
north-south direction) with the grid aligned to coincide with the Inner Harbor
entrance channels. The minimum cell width was 235 ft, and smaller cells were
concentrated in areas where channel resolution was necessary. The grid
extended seaward of the Middle Breakwater approximately 4.2 miles and covered
an area of about 146 square miles. This grid was adopted for use in the

present study.
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29. In the vertical, a stretching mechanism is used to smoothly
represent the bathymetry. It permits the same number of cells in shallow and

deep portions of the water body.

Model Input Data

30. Boundary conditions chosen for all model runs were the application
of measured or constituent tidal elevations at the seaward and western open
boundaries, wind stress on the water surface, and a quadratic bottom stress
using the Manning’'s n coefficient. For astronomic tidal forcing, an
elevation computed from tidal constituents was applied along the entire open
boundary. This assumption was tested in previous studies (Raney 1976a, b;
Outlaw and Raney 1979; and Seabergh and Outlaw 1984) and found to be adequate
for reproducing accurate tidal elevations and velocities within San Pedro Bay.
When wind stress was applied at the surface, measured tidal elevations were
used to drive the open boundary. These data contained the effects of wind
stress at the boundary. The adapted boundary condition formulation was tested
and is discussed in a following section.

31. Initial conditions for all model runs included setting all internal
grid cell velocities to zero and selecting a starting time in the tidal and
wind records consistent with the assumption of a quiescent water body. The
model requires a large input data stream that includes information relating to
physical constants, turbulence/wind/friction parameters, grid characteristics

(depth, coordinate locations), and input/output control variables.

Sensitivity Tests

32. 1In order to successfully calibrate a model, it is important to
first obtain a knowledge as to how the model responds to a different selection
of key model coefficients. This effort is conducted by applying good
engineering judgment for an initial selection of these parameters and running
the uncalibrated model several times, varying individual parameters one at a
time. Tests conducted during this task included variations of the bottom
friction coefficient, wind-stress drag coefficient, horizontal and vertical
eddy diffusivity coefficients, vertical grid resolution, and boundary

condition sensitivity.
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33. Due to different scales and intensities associated with the
horizontal and vertical turbulent eddies in large water bodies, the lateral
eddy coefficients are typically several orders of magnitude larger than the
vertical eddy coefficients. Determination of realistic values is a major and
difficult task in modeling the harbor currents. Previous experience (Sheng
1983) with similar applications indicated that use of constant eddy
coefficients for both the horizontal and vertical is sufficient for this
study. Data are not available to justify spatial or temporal variation of
these coefficients.

34, Several types of runs were made with the model: constituent tidal
forcing, pure wind-driven forcing, measured tidal forcing with and without
wind, and use of varying number of layers. The bottom friction coefficient
was varied between a Manning’s n of 0.005 and 0.03. Little effect was
noticed on the vertically integrated velocities; however, the vertical profile
was slightly altered. This behavior was expected due to the relative deepness
of the harbors. The friction coefficient was used in future runs to adjust
the model for obtaining a better representation of the vertical structure at
prototype gage locations.

35. The model permits use of several formulations of the inertia terms
in the governing equations. The horizontal eddy coefficient Ay was varied
between 0 and 1,000,000 cm?/sec, depending on the finite difference form of
the inertia terms. Values between 10,000 and 100,000 cm?/sec appeared to give
reasonable results, which was consistent with earlier experience (Sheng 1983).
The vertical eddy coefficient was varied between 2 and 100 cm?/sec, and it was
found that a value between 5 and 15 cm?/sec gave reasonable results in the
model tests. These ranges for the eddy coefficients are technically appro-
priate for the San Pedro Bay application.

36. The formulation of the wind drag coefficient is according to Garrat
(1977). Data used by Garrat to develop this drag law contain a high degree of
variability in the lower range of wind speeds (less than 20 knots). The
nearest recording of wind speed and directional data was at the offices of the
Port of Los Angeles, north of the entrance to the Main Channel. Data were not
obtained during the month of August 1987 from the WES gage located on the San
Pedro Breakwater due to instrument malfunction. Therefore, several tests were
run to determine the need for including a spatial variation in the wind field,
representing the marine-land influence, and adjusting the drag coefficient

used by Garrat. These tests resulted in the following conclusions: the Inner
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Harbor channels are protected from wind influence by the structural industri-
alization of the surrounding land; wind influence in the harbor was restricted
to those periods when the wind speed exceeded 5 to 10 knots; and the data
obtained from the Port of Los Angeles Headquarters Building anemometer were
representative of wind behavior over the entire model domain. Artificial
adjustment to represent a spatial variation would have been an impossible task
and, without any wind data to check the adjustment, could not have been
defended. These conclusions resulted in the decision to apply Garrat's drag
law without adjustment and to eliminate wind influence on protected Inner
Harbor waters.

37. The model was run with three and five layer resolution in the
vertical. Results from these runs indicated that three layers were sufficient
to resolve the vertical structure in all areas of the domain where measure-
ments were obtained. Vertical resolution planned for the WQM will not exceed
three layers; hence further resolution in the hydrodynamics was not warranted.
Additional sensitivity tests were performed in support of the WQM application.
These included testing dye tracer conservation, length of time to reach a
dynamic steady-state condition within the harbor, and tracer studies to assist
the WQM calibration. These efforts will be reported in Part VII on Hydro-
dynamic Simulations for Water Quality Modeling.

38. 1In conducting these tests, it was evident model results throughout
the harbor complex were highly sensitive to a choice in boundary conditions.
Figure 16 shows the residual obtained by subtracting observed surface eleva-
tions at TG 1 and 6 for 7-9 August. These measurements are typical for the
open coast fronting the harbors. Data were not collected along the entire
open boundary, and an attempt was made to estimate tidal variation along the
seaward boundary by using measurements at TG 1 and 6. These tests improved
comparison with observed data at current gage (CM7) near the end of the Long
Beach Breakwater, but comparisons of model and observed current data at all
other gages in the Outer and Inner Harbors were not as good as those obtained
using a constant tidal signal along the seaward boundary. Since proposed
plans are limited to modifications of these areas, it is important to pay
greater attention to calibrating to gages within the harbors. From the
analysis of the tide measurements and model testing, it appears the level of
sensitivity is on the same order as the accuracy of the measurements. Hence,
the assumption of a constant tidal signal along the open coast boundary was

used in all calibration/verification and plan test simulations.
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Hydrodynamic Model Calibration/Verification

39. Data collected during the month of August 1987 were reviewed, and
two periods for model skill assessment were determined. These periods were
7-11 August and 19-23 August, and the selection was based on having collected
data over the water column at the greatest number of locations. Another
criterion used in the selection was that the earlier period represented a
large spring tide condition while the later period was near a mean tide. If
the model can be demonstrated to reproduce these two diverse periods, confi-
dence in reproducing hydrodynamics for the month of August in support of the
water quality modeling effort can be gained.

40. The period from 7 to 11 August 1987 was taken as the calibration
period for the model. Measured tidal elevations (Figure 17) were used to
drive the open boundary starting at 0000 hr on the 7th of August (5232 hr).
Wind data for this period (Figure 18) were used to compute the surface stress
boundary condition. The direction shown is the direction, measured in degrees
from the north, from which the wind is blowing. A time step of 60 sec was
used in all model runs. Initial simulations indicated the need to reconfigure
some of the model representation of the Inner Harbor channels (depths and
geometry). Several simulations were made varying eddy coefficents and bottom
friction to calibrate to measured current speeds and directions throughout the
water column. The final set of model coefficients chosen were n = 0.02 ,

Ay = 20,000 cm®/sec, and A, = 10 cm?’/sec. Data taken during the drogue
experiment (Meadows 1987) were examined and compared with the model results as
a consistency check. The most reliable data for skill assessment were
measured tide and currents at specific locations throughout the study area.
Comparisons to these data are presented.

41. The process of calibration/verification involves determining the
best estimates for bathymetric/geometric representation and model coefficients
(friction, wind drag, diffusion, etc.) that allow for good agreement in com-
paring model with observed data for one set of conditions. A second event is
simulated without further model adjustment, and the quality of the comparison
of model with observed data is assessed. Figure 19 displays the measured and
model tidal elevations imposed at the open boundary for the verification period
starting at 0000 hr on the 19th of August (5520 hr). Wind data for this period

(Figure 20) were used to compute the surface stress boundary condition.
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42. For this study, a quantitative measure of goodness of fit was not
attempted due to the frequency of subtidal oscillations in the harbors. To
match each and every l-hr subtidal oscillation would require commensurate
accuracy in measuring forcing data (wind and the boundary ocean tide both
spatially and temporally). The key used in comparing model with observed data
is to look for a match in peak flood/ebb wvelocity magnitudes, range of sub-
tidal oscillations, and overall match of trends in the data. Presentation of
results will be divided into three categories: tidal elevations, currents,
and circulation. Both calibration and verification results will be presented
together in each category. Graphics will be shown for representative gages
and processes.

Tidal elevations

43. As mentioned previously, tidal response within San Pedro Bay is
almost immediate, and shelf oscillations are present throughout the harbor and
are amplified in the Inner Harbor. Gage data taken from open ocean sites were
used to develop the forcing boundary condition, and comparisons are presented
(Plates 1 and 2) for TG 3 (Cerritos Channel) and TG 7 (San Pedro Bay-East
End). For both assessment periods, the match in phase and tide range is
excellent.

Currents

44, Observed currents are much more difficult to match. Measurement
devices are sensitive to local effects (for example, ship passage, nearby
geometry, high-frequency wind effects, etc.). For very small currents, the
measured directional data and current magnitudes may exhibit unreasonable
values and higher scatter because of inertia and higher noise-to-signal ratio.
The measurements in this regime are therefore not as reliable as for higher
currents. Comparing model results with general trends in the measured data
appears to be as valid as a statistical procedure to quantify a match.

Table 1 lists all velocity gage locations where current observations were
successful during the assessment periods. Gage locations within the harbor
complex are shown in Figure 21. Even though some comparisons are not perfect,
the overall quality of the match indicates that the model is reproducing
current behavior throughout the harbor complex.

45. In comparing model and observed currents, several factors must be
kept in mind. First, model results are averaged over areas between 3 and
30 acres, whereas gage readings are representative of a singular point in the

harbor. Second, the model approximates the vertical with three layers, and
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model velocities are an average for an entire layer (usually 10 to 25 ft in

height; see Table 1 for meter locations in the vertical). Gage results are

taken at specific heights in the water column. Third, but not necessarily

inclusive, gage measurements devices have an inherent error, and the forcing

boundary condition is not exact.

46. Comments on comparisons at each gage location are as follows:

a.

o

e}

[aN

o)

Irh

CM1 - Cerritos Channel - Plates 3-10. Measurements were
obtained in two layers (surface and bottom). Current direction
shown in the plates is in degrees measured from the north and
represents the direction in which the current is flowing. Note
that directions shown as +180 and -180 deg are the same. In
general, all peak flood and ebb currents (magnitudes and
directions) were matched in the upper and lower model layers.
Ranges of observed subtidal oscillations were replicated. A
greater variance between model and observed currents was noted
for the upper layer in the calibration run. Somewhat higher
subtidal oscillations were noted during day 2 of the
verification simulation, which may be caused by an extraneous
small oscillation in the forcing tide gage (see Figure 19).

CM2 - Main Channel - Plates 11-22. Gage measurements were
taken in three layers. A good comparison is noted for all
levels (see comments for CMl). Greatest variance is noted for
subtidal oscillations during different ebb events in both
calibration and verification runs.

CM3 - Tong Beach/Pier F - Plates 23-34. Gage measurements were
made in three layers. Greatest variance is noted in the bottom
layer of the calibration run and in the surface layer of the
verification run. Directions compared well, and the overall
comparison is fair to good.

CM4 - Quter Harbor - Plates 35-38. Gage data were recovered at
the bottom layer only. Velocities are generally low in this
area of the harbor, and circulation patterns are complex and
highly sensitive to the boundary forcing. Both magnitude and
direction were poorly represented in the calibration run, as if
the gage data were in error or results were sensitive to the
exact location of the gage. Results from the verification run
showed much improvement in magnitude and direction comparisons.

CM6 - Queen's Gate/Interior - Plates 39-46. Gage measurements
were retrieved for the surface and bottom layers and were
accurately modeled in both calibration and verification
periods.

CM7 - East Entrance/South - Plates 47-54. Data were taken in
the surface and bottom layers. Comparisons of model with
observed data were good during parts of both calibration and
verification periods. High velocities observed in the bottom
layer could not be replicated. It is expected current magni-
tude may be highly sensitive in this area to the specification
of the ocean tide at the shallow, eastern end of the open
boundary. However, gage data and model results both show an
opposing two-layer flow at times during the 5-day runs.
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47. Subtidal oscillations are in evidence throughout the harbor
complex. To better understand effects of these oscillations, circulation
plots (depth-integrated velocity) for a 2-hr period within the verification
period were made at 15-min intervals (Figures 22a-22i). These figures clearly
indicate reversal of direction in several areas throughout the harbor complex.
Significant influence extends beyond the outer breakwaters. However, primary
impact is felt within the complex. This effect may be characterized as a
pulsating flow pattern. At a given location, the flow may alternately speed
up and slow down. As observed in Figures 22b and 22c, flow into the harbors
is strong and directed toward the east in the Outer Harbor. Flow is toward
the west in the Inner Harbor. Thirty minutes later (Figure 22e), flow into
the harbors has diminished, and a circulation gyre has formed in the Outer
Harbor. Within the Inner Harbor, flow has reversed and is directed toward the
east. Then again, 30 min later (Figure 22g), the pattern for the entire
harbor complex has reverted to what was observed an hour earlier (Figure 22c).
This behavior of the harbor system is confirmed by analyzing observed data
from the 1987 Field Data Survey.

Circulation

48. No definitive data were taken to confirm overall model replica-
tion of flow patterns. Circulation data were saved and plotted at 3-hr
intervals during one tidal cycle in both calibration and verification periods.
Plates 55-60 display flow patterns at near peak flood, peak ebb, and slack
water for both calibration (7-11 August) and verification (19-23 August)
periods at each level in the vertical. Velocity vectors were plotted at every
third grid cell, and their length is proportional to current magnitude.
Comparisons of model results with gage, boat survey, and drogue data indicate
model flow patterns are reasonable. Circulation gyres are noted to exist near
the breakwater entrances and in the Outer Harbor, as expected. Range dis-
charge computations (discussed in a later section) confirm a net circulation
to the west in Cerritos Channel as modeled in previous studies (Raney
1976a, b; Seabergh and Outlaw 1984; Seabergh 1985). For most of the harbors,
flow is well-mixed. Additional discussion on circulation patterns is
presented in a later section comparing plan with existing conditions.

49, In summary, the overall calibration and verification of the model
was successful. Complex low flows and subtidal effects were well represented.

More accurate comparisons could not be achieved without the necessary detailed
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knowledge of the forcing boundary tides and good measurements of spatial and

temporal variation of wind speed and direction.
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PART VI: PLAN DEMONSTRATION TESTING AND ANALYSIS

50. The plan used to demonstrate model analysis of hydrodynamic/water
quality impact was Scheme B, Phase 1 (Figure 23). To represent this plan,
appropriate grid changes were made to approximate landfills and dredged depths
for all channel alterations (Figure 24). Base conditions adopted for
comparing plan with existing conditions were the two periods used for model
calibration and verification. Simulations of existing and plan conditions for
the month of August 1987 were also made to support water quality modeling
efforts.

51. Several methods were used to analyze the impacts of Scheme B on
hydrodynamic processes in the harbor complex. These included comparisons of
elevations and currents at specific locations, tidal prism changes, flow
changes through several cross sections, and changes in circulation patterns of

the harbor.

Tidal Elevations

52. Gage locations for comparing tidal elevation computations for
existing and plan conditions are shown in Figure 25. Plates 61-64 display
tide hydrographs for both calibration and verification periods, with and
without Scheme B at gage locations TCl, TC3, TC5, TCl4, and TCl7. Existing
and plan condition plots are superimposed, and no discernible differences in
amplitude or phase are noted. From these results, it can be concluded the
Scheme B, Phase 1 plan has no effect on tidal elevations or phase throughout

the harbor complex.

Tidal Currents

53. Gage locations for comparing computed tidal/wind-driven currents
for existing and plan conditions are also shown in Figure 25. Plates 65-104
display velocity time series for both calibration and verification periods,
with and without Scheme B at several gage locations. Existing and plan

condition plots are superimposed to permit easy visual inspection of impact.
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Tide and current gage locations for plan impact analysis



The impact of plan on currents at the different gages may be summarized as

follows:

Gage
Number Gage Name Comment
Cl Cerritos Channel Very small differences in amplitude and phase
in water column (Plates 65-66 and 85-86)
c2 Main Channel Primary differences noted in flood cycle--
up to 20-percent increase in velocity
(Plates 67-68 and 87-88)
C3 Long Beach-Pier F Decrease in velocities in water column--
oscillation amplitude reduced (Plates 69-70
and 89-90)
C4 Queen’s Gate-Interior Decrease (up to 25 percent) in velocities in
water column (Plates 71-72 and 91-92)
C5 East Entrance-South Little change in bottom current--lower
velocities at surface and middepth during
flood cycle (Plates 73-74 and 93-94)
cl18 Angel’s Gate Reduced velocities--more reduction during
flood cycle--reduction up to 50 percent
(Plates 81-82 and 101-102)
Cc19 Queen’s Gate Reduced velocities as at Angel’s Gate

(Plates 83-84 and 103-104)

54. For both test periods, current behavior in newly constructed slips
(PACTEX, Long Beach Dike (Plates 77-78 and 97-98), Pier J Expansion) exhibited
opposing directions from surface to bottom. In the new Middle Breakwater
Channel (Gage Cl4), surface velocities were higher toward the east (Plates 79-
80 and 99-100). For existing conditions, middepth and bottom layer currents
were primarily toward the west. For plan conditions, these layers exhibited
typical tidal cycle behavior with directions reversing from flood to ebb phase

and vice versa.

Tidal Discharges

55. Total tidal discharges through several ranges (Figure 26)
established in the model grid are shown in Plates 105-112. Existing and plan
condition results ave superimposed for visual inspection of impact. Results
show the expected small reduction in discharge caused by the introduction of

new landfill. The Middle Harbor Range was taken from the Navy Mole to the
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Middle Breakwater for existing conditions (Range 5E). With plan conditions,
this range was taken from the PACTEX landfill to the Middle Breakwater
(Range 5P). Plates 107 and 111 display results from this range indicating
similar discharge cycles with a 2- to 3-hr phase lag.

56. In additon to comparing time series of discharge, the total
discharge was integrated over a specific period during the simulation to
estimate changes in tidal prism of the harbors. Ranges 1, 6, and 7, located
across Angel’s Gate, Queen’s Gate, and the East Entrance, respectively, were
used for the tidal prism computation since they control flow into and out of
the harbors. Range 7 extends from the easternmost tip of the Long Beach
Breakwater to the shore south of Anaheim Bay. Because of the rectilinear
nature of the grid, it was convenient to select Range 7 in this manner. The
total water surface area bounded by these three ranges is approximately
660 x 10° sq ft. The total landfill area associated with Scheme B, Phase 1,
within the harbor complex is 67 x 10° sq ft. Therefore, a 10.1l-percent
reduction in available water surface area is expected to cause a corresponding
loss of tidal prism.

57. A period of 2 lunar days was chosen to calculate total and net
range discharge (hours 5282 to 5331.6 in the 7-11 August period and 5571 to
5620.6 in the 19-23 August period). Since the tidal range is fluctuating over
the entire period and the flows are influenced by wind, the total discharge
into the system will not equal total discharge out of the system. The
approach adopted is to sum results over each range and average inflow and
outflow for the two tidal cycles. Table 2 gives total flood and ebb volumes
for both simulation periods and prism computations. Percent reductions for

both periods are similar and compare well with the expected reduction.
Circulation

58. To aid in comparing plan with existing conditions, plate figures
for circulation during near peak flood and ebb and slack water for existing
conditions are presented along with patterns for plan conditions to permit
easy visual inspection of plan impact (Plates 113-124). Velocity vectors are
plotted at every third grid cell. Of course, the first conclusion reached is
that the new landfill eliminates the gyre circulation in the Outer Harbor and
peak flood and ebb velocities in the outer breakwater entrances are reduced.

Specific comments for the three snapshot periods are:
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Peak flood. Changes in circulation patterns are confined to
the Outer and Inner Harbor areas. For the specific point in
the calibration period at which the peak flood snapshot was
taken, flow direction was changed by the plan from westerly to
easterly. A stronger clockwise circulation within the Navy
Mole was noted for the middepth and bottom layers with the
plan. Flow directions within new slips are reversed in the
upper and lower layers.

i)

I

Peak ebb. Changes in circulation patterns are again confined
to the same areas as for peak flood.

c. Slack water. Plan condition results show the absence of the
large gyre observed for existing conditions.

59. 1In order to determine the effect of the plan on net circulation in
the Inner Harbor areas (Los Angeles Main Channel, East Basin Channel, Cerritos
Channel, and Back Channel), the discharges across Ranges 2, 3, and 4
(Figure 26) were integrated over two lunar cycles for existing and plan
conditions, and net flow volumes across the ranges were computed. The
direction or sign of the discharges was duly taken into account in these
calculations. The resulting net flow volumes are shown in Table 3 for
calibration and verification periods. Ranges 2 and 3 are located across the
entrance to Los Angeles Main Channel and the Navy Basin, respectively, whereas
Range 4 is located across Cerritos Channel. The following sign conventions
are used for net flow volumes (Table 3) and net flows. At both Ranges 2 and
3, positive and negative signs respectively indicate that net flow across the
ranges is to the north and south. At Range 4, positive and negative signs
denote that net flow across the range is to the east and west, respectively.

60. Considering existing conditions, it is seen that for both calibra-
tion and verification, the net flow is negative at Ranges 2 and 4, and
positive at Range 3. This means the net flow is directed towards the south at
Range 2, towards the north at Range 3, and towards the west at Range 4,
implying a net counterclockwise circulation (i.e., from Long Beach to Los
Angeles) in the Inner Harbor areas. This agrees with the results of previous
WES studies, as mentioned in Part II. Similarly, it can be deduced from
Table 3 that for the plan, the net circulation is clockwise during the
calibration period and has a strong tendency towards the clockwise direction
during the verification period.

61. In summary, with the introduction of Scheme B, Phase 1, tidal
elevations remain unchanged; however, current velocities through the harbor
entrances are reduced along with the tidal prism. There were some changes in

the harbor circulation, but these changes were primarily confined to the Outer
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Harbor and Inner Harbor areas. Results indicate the plan has a tendency to

cause a reversal in the net flow through the Inner Harbor.
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PART VII: HYDRODYNAMIC SIMULATIONS FOR WATER QUALITY MODELING

62. Several hydrodynamic simulations were made in support of the water
quality modeling effort. These included: (a) establishing the length of time
required to reach a dynamic steady state, (b) repeating a steady-state tidal
cycle for several days and tracking dye tracer movements within the Outer and
Inner Harbors, and (c) simulating conditions for the month of August 1987 for
both existing and plan conditions.

63. As mentioned previously, the fundamental interfacing problem
consists of processing hydrodynamic output so that advection and diffusion are
accurately depicted in the WQM. The first step in developing interface
procedures was to provide sample HM output from an uncalibrated model for
checking WQM representation of cell volumes, flow among cells, discretization,
and mass conservation. These and all tests described in this section are
reported in a separate report (Hall 1990) on the WQM effort.

64. After the HM was calibrated and verified, the next step in the
interface development was to assure that the transport properties of the HM
were maintained in the WQM. The HM served as a standard for evaluating and
adjusting the transport properties of the WQM. Results from HM simulations of
a passive tracer in the Outer Harbor were used to initially adjust the WQM
representation of the study area. These simulations were performed by forcing
the HM with a 24-hr sinusoidal tide for 5 days. Examination of the results
showed a dynamic steady-state condition in the harbor complex was reached in
2 days, i.e., velocities during the third day were reproduced in the fourth
day. The simulation was restarted, and a passive tracer patch was introduced
in the surface layer of several cells in the Outer Harbor and tracked for
3 days. Results show the tracer diffuses to the bottom and disperses
throughout the Outer Harbor during the test period.

65. Hydrodynamic information for calibration and verification of the
WQM was provided by simulating most of the month of August 1987. Appropriate
tidal elevation and wind data were selected from the field measurements to
force the HM for the simulations. Several overlapping HM runs, each approx-
imately 5 days in duration, were made, and the results were concatenated to
form a continuous output file of HM results averaged over l-hr intervals.
Similar information was produced for both existing conditions and for the
Scheme B, Phase 1 demonstration test. This information was used as input to

run the WQM simulations from 2300 hr on 1 August to 0600 hr on 28 August 1987.
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PART VIII: SUMMARY AND CONCLUSIONS

66. Based on the results of the 3-D numerical model tidal circulation

study of the LA/LB Harbors and plan demonstration, it is concluded that:

a.

log

10

o)

o

IFh

=

I

Significant subtidal oscillations are present in the observed
data. The model did a good job in representing the magnitude
of these oscillations (up to 0.6 ft in elevation and 0.6 ft/sec
in velocity).

The 3-D model was successively calibrated and verified to
represent observed conditions in the LA/LB Harbor complex.

The landfill of the plan did not affect the filling of the
harbors since tidal ranges were maintained and no discernible
differences in phase were noted.

Discharge into the system was reduced by an amount equivalent
to the reduced harbor surface area (about 10 percent) implying
no change in the net tidal flushing per unit volume between
existing conditions and the plan.

The plan caused only small changes in the flow distribution
throughout the harbor complex.

Velocity magnitude and direction were changed at specific loca-
tions. The greatest change in magnitude occurred at the
entrances of the harbors. Peak flood and ebb velocities at
Angel’'s and Queen’s Gates were reduced up to 50 and 40 percent,
respectively, for a large spring tide condition. The decrease
in velocity was due to increased channel depths and reduction
of harbor surface area served by these channels. While
percentage changes were large, it should be noted that velocity
magnitudes throughout the harbor are small (less than

1 ft/sec). Even for a large spring tide (tide ranges of almost
9 ft), maximum velocities in Angel’s gate were less than

1.5 ft/sec.

Net circulation in the Inner Harbor showed a tendency to
reverse under plan conditions. The net circulation for
existing conditions is from east to west (i.e. from Long Beach
to Los Angeles Harbor), while under plan conditons the net flow
was from west to east toward Long Beach.

Circulation vector plots provided information on overall flow
patterns in the harbors. Existing condition patterns were
dominated by large horizontal eddies within the Outer Harbor.
Introduction of the plan landfill eliminated these eddies. The
plan also caused stronger gradients in velocity profiles.

Often upper and lower layers were characterized by flows in
opposite directions, especially in the new slips.

Production simulations were made in support of the water
quality modeling effort. The results of this effort are
described in a companion report.
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Table 1

Prototype Velocity Gage Locations

Location
Gage Number Water Depth, ft, MLIW Meter location Meter Depth, ft, MLLW
cM1l Cerritos Channel (30) Surface 5
Bottom 24
CcM2 Main Channel (35) Surface 10
Middepth 17
Bottom 29
CM3 Long Beach-Pier F (60) Surface 7
Middepth 32
Bottom 54
CM4 Outer Harbor (30) Bottom 24
CM6 Queen’s Gate-Interior (65) Surface 10
Bottom 50
CM7 East Entrance-South (46) Surface 14
Bottom 40
Table 2

Total Flood and Ebb Volumes (10% cu ft) During Two Lunar Cvcles

Calibration
Flood Ebb

Range No. Ex* Plan Ex Plan

1 5830 5280 5210 3930

6 3570 3580 3880 3750

7 5340 4110 5490 5800
Total 14740 12970 14580 13480
Average Ex 14660 Plan 13225
Difference 1435
Percent Change -9.8

Verification
Flood Ebb
Ex Plan Ex Plan
5190 4530 3330 2410
2320 2380 3080 2880
2690 2170 4620 4720
10200 9080 11030 10010
Ex 10615 Plan 9545
1070
-10.1

* Ex = existing conditions



Table 3

Net Flow Volumes (10% cu ft) During Two Lunar Cycles

Calibration

Range No. Ex* Plan
2 -109 56
179 -11

4 -166 22

Verification
Ex Plan
-138 26
179 21
-157 5

* Ex = existing conditions



PLATES 1-124

Plates are positioned for ease in comparison of velocity magnitude
and direction plots and existing and plan conditions.
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APPENDIX A: MODEL CALIBRATION FOR A CURVILINEAR GRID

1. The hydrodynamic model was first calibrated in two dimensions, using
National Ocean Service (NOS) 1983 field data. A boundary-fitted grid
(Figure Al) was used for the calibration. The grid was developed using
the EAGLE grid generation code (Thompson, Warsi, and Mastin 1984; Thompson
1987a, b*). The grid contains 86 x 46 cells, and the x and y coordinate
axes correspond, respectively, to the east-west and north-south directions.
Grid coordinate values shown in the figure are in grid units, each grid unit
corresponding to 500 ft. The thicker lines shown on the grid represent harbor
breakwater sections. The twin jetties at the entrance of Alamitos Bay are
represented in the grid by a single barrier shown by a thicker line. The
offshore boundary of the grid represents approximately the 120-ft mean lower
low water contour. The lateral boundaries are appropriately selected. All
three boundaries are chosen so they are away from the main area of interest to
the present study.

2. For purposes of two-dimensional (2-D) calibration, a 2-D wversion of
CH3D was used. Model bathymetry was obtained by digitizing the latest
available (1986) NOS nautical charts for the study area (charts 18751, 18749,
and 18746) and interpolating as necessary. All other available information on
bathymetry was also used in arriving at the final model depths.

3. The forcing tide was generated using tidal harmonic constituents for
the ocean area outside the main breakwater. After careful examination of the
field data, a period of 48 hr, starting from 1200 hr Pacific Standard Time (PST)
on 23 June 1983 was selected for calibration, since it represented a large
spring tide event and the maximum amount of field data were available for this
period. To minimize transients and avoid shock to the system, the tidal signal
was feathered over the first hour of simulation (that is, model tides at the
boundaries were gradually and gently built up over the first hour so that they
matched the real tide computed from tidal constituents starting 1300 hr PST).
The same tidal signal was used at all three open-water boundaries to force the
model. A time step of 60 sec was selected to run the model. Nonlinear terms
corresponding to advection and diffusion were not invoked. Model results for
surface elevation were compared with actual field gage measurements at tide

gages T660 and T680 in the interior of the harbors. It was observed from the

* See References at the end of the main text.
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comparison that typically the measured and computed tidal ranges were similar,
but the measured absolute water levels were higher than model predictions. The
difference was on the order of 0.7 ft. Flick and Cayan (1984) reported that the
El Nino effect on the southern California coast along with secular sea level
rise, and other effects, raised offshore water levels in June and July 1983 by
approximately 0.5 to 1.0 ft (0.7 £t at San Diego). Since this effect is not
included in the tidal signal generated from constituents, the tidal elevation
signal applied at the model boundaries was shifted upward by 0.7 ft, and the
model was re-run. A good match was obtained between computed and measured tidal
elevations at gages T660 and T680 (Figures A2 and A3) with respect to both
magnitude and phase,

4. After the test plan to be investigated was delivered, additional grids
were developed to incorporate a grid structure in which all future test plans
could be represented. 1In attempting the detailed calibration process for these
grids, it was discovered the skewness of some grid cells caused significant
numerical problems that could not be easily overcome (without substantial
applied research and development relative to the grid generation program). The
weakness in the approach was the inability to develop a practical engineering
grid on which stable computations could be made. This fact led to the decision
to adopt the dense rectilinear grid used in previous studies of San Pedro Bay
(Seabergh and Outlaw 1984).
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