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Model for the Computation 

of Time-Steady Nearshore Currents 
by Bradley Johnson 

PURPOSE:  The Coastal and Hydraulics Engineering Technical Note (CHETN) herein introduces 
a new model for the computation of depth-dependent time-steady currents in the surf zone.  

BACKGROUND:  Under the assumptions of longshore uniformity, monochromatic and 
unidirectional waves, one-dimensional (1-D) models have predicted the steady depth-integrated 
longshore current with reasonable accuracy in the regions of intense breaking (e.g., Bowen 1969; 
Longuet-Higgins 1970; Kraus and Larsen 1991). The addition of random wave fields with 
directional spread (Battjes 1974; Thornton and Guza 1986) produce similar results but indicate a 
difference in the magnitude of the horizontal mixing terms. It is, however, necessary to also predict 
the vertical structure of time-steady currents in the surf zone to reliably compute sediment transport 
rates. Indeed, concentrations of sediment are found to be orders of magnitude larger in the near-bed 
boundary layer where fluid velocities are, in general, smaller than the depth-averaged value. It is, 
therefore, of practical importance to predict the vertical variation of nearshore currents.  
 
The phase resolving equations of fluid motion may be best suited for a physically based prediction of 
sediment transport. Lin and Liu (1998), for instance, solved the Reynolds equations with an 
algebraic nonlinear Reynolds stress model. Karambas and Koutitas (2002) and Kobayashi and 
Johnson (2001) used Boussinesq and nonlinear shallow-water formulations, respectively. These 
time-dependent numerical models, however, are not suitable to most practical engineering problems 
due to the prohibitively large computation time.  
 
The new model NEARHYDS efficiently predicts wave height, setup, bed ripple formation, 
boundary layer thickness, and depth-dependent steady cross-shore and longshore currents. The 
solution of the time-averaged equations of energy balance and alongshore momentum is 
implemented with modular coding that is flexible and well suited for the iterative process required to 
include the effects of interaction. NEARHYDS is a compiled collection of Matlab routines and a 
graphical user interface complete with an on-line user’s guide and is suitable for the computation of 
steady nearshore hydrodynamics on beaches with essentially straight and parallel contours. The 
compiled version runs on a Windows PC, and the hydrodynamic predictions for a typical surf zone 
domain are completed in several seconds. This physics-based two-dimensional (2-D) model has been 
funded through the Advanced Nearshore Circulation work unit of the U.S. Army Corps of Engineers 
Navigation Systems Research Program and will form the basis for a more general version that allows 
alongshore variability.  
 
No mechanism exists within the formulation of the equations for the generation of low-frequency 
standing or progressive waves in the cross-shore. These low frequency motions, however, may play 
an important role in cross-shore profile development. While the wave-current interaction is included 
in the bottom boundary layer and stress analysis, the effect of the currents on the short waves was 
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not considered. As justification, it was found that the deviation from Snell’s law due to longshore 
current is exceedingly small, and the cross-shore currents are considered to be small relative to the 
wave phase speed on alongshore uniform coasts.  
 
MODEL DESCRIPTION:  The decay in wave height of obliquely incident waves is the primary 
generation mechanism for longshore currents; undertow is generated through the mass flux due to 
the presence of waves, a surface roller, and the depth-inhomogeneity of the radiation stress. Wave 
breaking is incorporated into the momentum equations through the solution of a suitable phase-
averaged energy equation in the cross-shore direction. With an estimate of the energy flux, the 
radiation stresses due to the organized wave motions can be quantified and included as forcing in the 
time-averaged and depth-averaged momentum equations. The gradients of the radiation stress in the 
cross-shore direction are counteracted, primarily, by a slope in the mean free surface position, 
termed the setup. The alongshore momentum equation is a balance of the radiation stress gradient 
with momentum mixing and bottom shear stress. The depth-variation of the steady currents are based 
on horizontal time-averaged Reynolds equations where use is made of the solutions of the energy 
and depth-integrated momentum equations as well as physically-based closures. First, the solution of 
the phase-averaged energy equation for the waves is presented, where two approaches are provided: 
a root-mean-square (RMS) representation and a wave-by-wave (WBW) representation. Comparisons 
of wave height are presented as verification of these methods. Second, the solution of the cross-shore 
momentum balance is described, and results in the predictions of setup and steady cross-shore 
currents. Finally, the longshore momentum balance is presented that provides the longshore current. 
Comparisons with lab data are shown as a gauge of the model accuracy, and more thorough vali-
dation with field data will be completed as the development process proceeds.  
 
Phase-Averaged Energy Equation.  The energy equation, time-averaged over many short wave 
periods, may be expressed as  

 F
d

BE D
dx

= −  (1) 

in which  is the cross-shore coordinate positive onshore; x FE  = time-averaged energy flux per unit 

width; and BD  = time-averaged energy dissipation rate due to wave breaking, which needs to be 
estimated empirically in this model. The model NEARHYDS solves Equation 1 with either the 
RMS wave height representation presented by Battjes and Jansen (1978) and calibrated by Battjes 
and Stive (1985) or expressed as the superposition of regular waves (WBW) (e.g., Dally 1992).  

RMS representation.  The time-averaged energy flux per unit width for random waves can be 
represented with the RMS wave height and peak period as  

 21 cos
8 rms pF g H n CE ρ α=  (2) 

where gρ  is the unit weight of water; 8rmsH σ=  with  = standard deviation of the free-surface 
elevation; n  is the ratio of the wave group speed to linear phase speed;  = phase velocity based 
on ; and  = spectral peak angle (Figure 1).  

σ
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pT α
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Figure 1.  Variable definition sketch 

The wave breaking dissipation formula by Battjes and Stive (1985) is given by  

 21
4B pD g f Qρ= mH  (3) 

where pf  is the spectral peak frequency ;  is the local fraction of breaking waves governed by a 
Rayleigh wave height distribution truncated with the maximum wave height  determined using 
the Miche criteria.  

Q

mH

 
The energy equation (1) is integrated numerically using Equations 2 and 3, resulting in an estimate 
of the cross-shore distribution of wave height. Recalling that the energy equation is the first step in 
the solution of the time-averaged momentum balance, the radiation stresses are then expressed using 
linear theory as  

 2 2 21 1 1(cos 1) sin cos
8 2 8xx rms xy rmsS g H n S g H nρ α ρ α⎡ ⎤= + − ; =⎢ ⎥⎣ ⎦

α  (4) 
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Linear wave superposition method.  Alternatively, the energy flux can be expressed as the 
superposition of monochromatic waves under the assumption of narrow bandedness in frequency. 
Individual wave contributions are governed by  

 21 cos 1
8 i pF i g H n C i NE ρ α= = :  (5) 

where  = wave height for the  wave, and  is the total number of waves. The values of each 
wave height realization at the offshore boundary are given in terms of the exceedance probability   

iH thi N

eP

 1ln 1i rms
e i

H H i N
P

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
= :  (6) 

where  is a single realization of the random variable  that is uniformly distributed between zero 
and one. The distribution of individual wave heights at the seaward boundary approaches a Rayleigh 
distribution as .  

e iP eP

N → ∞
 
In contrast to the RMS representation, the breaking dissipation is zero for a single wave realization 
until the Miche incipient breaking criterion is met. Thereafter, the dissipation is assumed to be in 
proportion to the difference between the wave energy flux and an empirical stable energy flux, F isE , 
associated with a stable wave height of 0 4   d.

 0 15
F FiB i

E ED
d is

⎡ ⎤
⎢ ⎥⎣ ⎦

.= −  (7) 

where  is the still-water depth.  d
 
The energy equation (1) is integrated numerically for each offshore wave condition with energy 
fluxes Equation 5 and breaking dissipation Equation 7 resulting in an estimate of the cross-shore 
distribution for each individual wave height. The excess momentum fluxes are then expressed as 
aggregates of the individual cross-shore wave height distributions:  

 2 2

1 1

1 1 1 1(cos 1) sin cos
8 2 8

N N

xx i xy i
i i

S g n H S gn
N N

ρ α ρ α α
= =

⎡ ⎤= + − ; =⎢ ⎥⎣ ⎦
21 H∑ ∑  (8) 

Predicted wave height compared to laboratory data. Recent laboratory data of random 
waves are valuable for model verification. The recirculating Longshore Sediment Transport Facility 
(LSTF)(Hamilton and Ebersole 2001) was designed for the collection of detailed free surface and 
velocity data. A total of 110 horizontal measurement positions were set up in the LSTF basin with 
dimensions of approximately 30 m by 25 m in plan. The analysis of the hydrodynamic and 
bathymetric conditions over this region demonstrates that the modeling of the tank can justifiably be 
simplified by assuming alongshore uniformity. The following analysis focuses on a single 
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cross-shore transect located near the center of the tank. Spilling waves with  and peak 
period T  are used as a verification case herein.  

18rmsH c= m
s= .1 5p

The energy equation (1) is solved across the domain using either the RMS or WBW formulation. 
Random wave fields are characterized by smoothly varying wave heights due to the range of 
breakpoints, and a first order explicit method is used to numerically integrate Equation 1. This 
simple procedure is considered to be accurate enough in light of the empirical parameterizations and 
the smooth variation of energy across the surf zone. Figure 2 shows the cross-shore variation of  
for the two formulations as well as laboratory data. The data collection was repeated a total of 10 
times resulting in 10 measurements of wave height at each of the 10 cross-shore measurement 
locations. All of the data are included in Figure 2 to demonstrate the degree of scatter. For each of 
the numerical solutions, empirical parameters have been chosen based on accepted recom-
mendations, and no attempt has been made to calibrate the models to fit data. The difference 
between the solutions by these two formulations is due to the unequal breaking dissipation, where 
the RMS method predicts a larger dissipation in the deeper region of the domain. The RMS method 
underpredicted the wave height in the outer surf zone, but agreed well with data in the mid-surf. On 
the other hand, the WBW method matches well with data in the offshore region of the data but 
overpredicts wave height in the mid- and inner-surf zones.  

rmsH

 

 
Figure 2.  Bathymetry and comparisons of model wave height predictions to measured data 
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Cross-Shore Momentum Equation.  The time-averaged cross-shore momentum equation for a 
long straight coast is given by  

 
2

2

2b b b
xx xz z z

g hu dz P dz gh dz
x x x x x

η η ηρ ηρ ρ τ∂ ∂ ∂ ∂ ∂+ − = − +
∂ ∂ ∂ ∂ ∂∫ ∫ ∫ Bτ−  (9) 

where u  is the cross-shore velocity;  is total pressure; P h  is the mean water depth; η  is the mean 
free-surface position; xxτ  is a Reynolds stress; and  is the bottom shear stress. The left hand side 
of Equation 9 is made up of the forcing terms that arise from the organized wave motion as well as 
current contributions. The time-steady currents may play a role in momentum mixing in the surf 
zone; it is the case, however, that the rigorous inclusion of these effects is complicated in the trough 
to crest regions and requires assumptions about the wave shapes and velocity profiles. It is therefore 
assumed that the currents do not play a vital role, and the velocities in Equation 9 are assumed to be 
wave induced. Furthermore, it has been shown that the mean bed shear stress and the turbulent 
mixing are small relative to the forcing and free-surface slope (e.g., Longuet-Higgins and Stewart 
1964). Incorporating these simplifications, then, along with a linear representation of the wave 
induced velocities and pressures yields the familiar cross-shore balance:  

xτ B

 xxS gh
x x

ηρ∂ ∂= −
∂ ∂

 (10) 

The momentum equation (10) is then solved numerically for the cross-shore variation of the setup, 
η , given the known radiation stress from Equations 4 or 8. A first-order explicit scheme is con-
sidered to be accurate enough for this slowly varying function of cross-shore distance.  
 
To predict the depth variation of the steady cross-shore velocity, use is made of an eddy viscosity 
closure. The depth-dependent time-averaged cross-shore Reynolds equation is integrated twice 
vertically to arrive at the variation, and boundary conditions are employed to determine the inte-
gration constants and close the problem. It is convenient to decompose the total velocities into steady 
and time-varying components:  

 u u u v v v w w w= + ; = + ; = +% % %  (11) 

such that all time-varying portions have a diminishing time average i.e., 0u v w= = =% % % . It is assumed, 
in the following, that the steady vertical current w  is negligible relative to the horizontal currents. 
Also, the cross-shore gradients of integrated turbulent shear are assumed to be small (Stive and Wind 
1982), and the specification of the vertical gradient of the wave stress uw% %  is given according to 
Rivero and Arcilla (1995). The equation that governs the current profile, then, is given as  

 22 21( ) ( )
2tv u

u gu w uz z x x x
ην∂ ∂ ∂ ∂ ∂= − + +

∂ ∂ ∂ ∂ ∂
% % f=  (12) 
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The simplest solution of the general equation (12) is the specification of a depth-invariant turbulent 
vertical eddy viscosity tvν . In fact, Garcez Faria et al. (2000) concluded that a depth-dependent eddy 
viscosity did not improve predictions of the undertow when compared with field data. In the model 

NEARHYDS, the eddy viscosity is expressed as 0 01tv h ghν = . . If the forcing uf  is also con-
sidered to be constant over depth, the required two integrations yield a quadratic profile:  

 
2

1
22

u

tv tv

f c zzu
ν ν

′′= + + c  (13) 

where  is a new local coordinate system with  at the bottom, and  and  can be 
specified through two boundary conditions. Alternatively, the constants can be determined with one 
boundary condition and a statement of mass conservation, which is the closure employed in 
NEARHYDS.  

z z d′ = + 0z′ = 1c 2c

 
The first constant  is expressed through a balance of the bottom shear stress and the eddy viscosity 

closure with 
1c

0zu ′=| . resulting in 1 bxc τ ρ= / . The average bottom shear stress is solved with a 
boundary layer analysis that is beyond the scope of this publication, but combines aspects of Grant 
and Madsen (1979) with ripple prediction of Nielsen (1992) and wave friction factors outlined by 
Soulsby (1997). The end result is the determination of a boundary layer thickness  and a shear 
stress applied to the interior portion of the fluid. The boundary layer solution must be solved itera-
tively, but it converges within about three iterations.  

δ

 
It is common to determine the second constant with a statement of mass conservation whereby a 
finite mass flux due to the presence of waves is balanced by a steady seaward directed current under 
the trough level. Kennedy et al. (1998) approximated the volume flux through the time averaged 
continuity equation and linear long wave resulting in an expression for the average undertow below 
trough level:  

 
2

cos
8

rms
r

gh H
u h

α⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (14) 

The final unknown can then be determined by equating the mass flux and the assumed form of u  
expressed in Equation 13 integrated from the bed to the trough level, resulting in  

 2
2 6 2

u bx
tr

tv tv

fc du
τ

td
ν ν ρ

= − −  (15) 

where  is the distance from the bed to the trough level, approximated as td 2
rmsHh − . Substitution of 

the constants into Equation 13 yields  

 
22 2

2 21
2 2 2 3

t bx
r r

tv tv

du wu g zu ux
τη

ν ν
⎧ ⎫⎧ ⎫∂ ⎪ ⎪

2
tdz

ρ
⎧ ⎫′= + − + + − + −′⎨ ⎬⎨ ⎬ ⎨∂ ⎩ ⎭⎪ ⎪⎩ ⎭⎩ ⎭

% %
⎬  (16) 
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where u  is approximated as ru  in the formulation of uf .  
 
The solution of the undertow problem requires the specification of the so-called radiation stress 
terms 2u%  and 2w%  in Equation 16. The simplest solution is the use of depth invariant linear long-wave 
forcing  

 g gu w z
xh h
ηη ∂ ′= ; =

∂
%

% % %  (17) 

One of the stress terms, for example, is then expressed as  

 
2

22

8
rmsHg g

u
h h

η= =%%  (18) 

where 8rmsH σ=  has been used.  
 
Thus the depth variation of the steady cross-shore flow is solved with the use of a local mass 
conservation, a shear stress boundary condition, and linear long-wave theory to quantify radiation 
stresses.  

Alongshore Momentum Equation.  The time-averaged momentum equation for a long straight 
coast is a balance of the organized wave forcing and current momentum with turbulent mixing and 
bottom shear stress.  

 
b b

xy yz z
uv dz dz

x x
η η

ρ τ∂ ∂=
∂ ∂∫ ∫ Bτ−  (19) 

where v  is the longshore current. The left-hand-side of Equation 19 represents the combined effects 
of wave forcing and current dispersion. As in the cross-shore momentum equation, the steady 
currents may play a role in the distribution of momentum in the surf zone. These effects are 
neglected, however, due to the added complexity and ambiguities associated with a more detailed 
analysis. The assumption, therefore, is that the current effects are small, and that the wave-induced 
forcing dominates this term and can be quantified with linear theory:  

 
b b

xyz z
uv dz uv dz S

η η
ρ ρ =∫ ∫ % %  (20) 

where  is the radiation stress given by Equations 4 or 8.  xyS
 
A common Reynolds-type expression is employed in the specification of the mixing term and it is 
assumed that the mixing stress can be expressed in terms of the near-bottom velocity gradient. The 
eddy viscosity tν  is typically assumed to be depth invariant for the solution of the alongshore 
momentum problem, and then the mixing shear term in Equation 19 is expressed:  
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b

xy tz

vdz h
x x x

η δτ ρ ν
⎛ ⎞∂∂ ∂= ⎜∂ ∂ ⎝ ⎠

∫ ⎟∂
 (21) 

The eddy viscosity tν  is expressed as in Longuet-Higgins (1970), t swsN x ghν = | |  where  is an 
empirical dimensionless coefficient, and 

N

swsx| |  is the distance to the shoreline.  
 
While the bottom shear stress could justifiably be neglected in the depth integrated cross-shore 
momentum balance, the near bed stress is the primary force counteracting the radiation stress 
gradient in the longshore balance. Use is made of the quadratic friction law to define the time-
averaged stress  

 y fc u vδ δτ ρ= | |B
uuuur

 (22) 

where the subscript  indicates that the velocities are taken near the bottom but outside of the 
boundary layer. The time-averaging in Equations 22 is complicated by the necessary detailed 
knowledge of magnitudes and phasing for both the steady and time-varying velocities. Conse-
quently, the square wave approximation of Nishimura (1982) is employed to give a simplified 
expression for the shear stress. In the interest of brevity, the equations are not presented.  

δ

 
Utilizing the previous simplifications, Equation 19 reduces to  

 xy t y
vS h

x x x
δρ ν

⎛ ⎞∂∂ ∂= ⎜ ⎟∂ ∂ ∂⎝ ⎠

Bτ−  (23) 

The simplified alongshore momentum equation thus reduces to a second-order differential equation. 
Central differences are used to solve for the near-bed longshore velocity vδ  with known radiation 
stresses. A central difference representation of the mixing term necessitates the solution of Equa-
tion 23 as a system of implicit linear finite-difference equations. The offshore boundary condition is 
specified by the user, and the shoreline boundary condition is developed by solving Equation 23 
without momentum mixing. Note that the undertow solution must be completed prior to an along-
shore momentum balance due to the inclusion of the cross-shore velocity in the bottom shear stress 
formulation.  
 
As in the cross-shore flow, prediction of the depth variation of the steady longshore velocity is made 
with the use of an eddy viscosity closure. The depth-dependent time-averaged alongshore Reynolds 
equation is integrated twice vertically to determine the steady current profile. Boundary conditions 
are then employed to determine the constants of integration. Stive and Wind (1982) demonstrated 
that the horizontal turbulent stress term was small, and thus it is neglected. Also, the vertical wave-
induced flows are assumed to be phase shifted relative to the horizontal flows such that vw% %  is small. 
Neglecting the steady term that includes the steady vertical current is justifiable for small bottom 
slopes, and the simplified equation that governs the current profile is expressed  

9 
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 {tv r
v vuuz z x

ν∂ ∂ ∂= +
∂ ∂ ∂

V % %}  (24) 

Where  is the depth-averaged longshore velocity under the trough level. Again, the right-hand-
side of Equation 24 is made up of current and wave forcing components and is assumed to be 
independent of depth. The implicit nature of this equation dictates the iterative solution employed in 
NEARHYDS. Proceeding as in the cross-shore problem, Equation 24 is integrated twice, generating 
two constants of integration. As previously, the eddy viscosity is assumed to be depth-uniform and 
identical to the formulation used in the undertow problem. The first constant is specified with the 
match of turbulent stress and the bottom shear stress obtained from the solution of the depth-
integrated alongshore momentum equation (23). The second constant is determined from the 
computed near-bottom velocity 

V

vδ  resulting in  

 { } 21
2

y
r

tv tv

v v vu zzuxδ

τ
ν ρ

∂ ′= + + +′
∂

B

V % %
ν

 (25) 

where the short-wave forcing term vu% %  is quantified according to linear long-wave theory.  

PREDICTED NEARSHORE CURRENTS COMPARED TO LAB DATA: The LSTF test case 
of spilling waves that was used for the comparison of predicted wave heights to data is also used to 
gauge the accuracy of the computed setup as well as predicted current magnitudes and depth 
profiles. The waves with an offshore wave angle of 10 deg generated a longshore current and a 
seaward directed return current over the movable bed. A time series of velocities was collected at 
10 positions throughout the water column at each cross-shore position as shown in Figure 3. The 
portion of the column covered by the dense vertical spacing of measurement locations is used to 
verify the cross-shore and longshore current models. The nearshore currents were computed using 
standard values for the coefficient of friction  and the horizontal mixing coefficient 

. No attempt has been made to achieve a better fit with data by tailoring these factors.  
0 01fc = .

0 04N = .

Figure 3.  Vertical measuring locations Test 1H, case 3 
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The time-average surface position is shown in Figure 4. As in the presentation of the wave height 
data, all of the measurements are shown at each position in order to demonstrate the degree of 
scatter. The differences in the RMS and WBW methods are consistent with the previously shown 
wave height computations considering that mean free-surface slope is a result of the decay in . 
It is expected, then, that the RMS formulation will exhibit a greater setup through most of the 
domain; the greatest slope in the mean free-surface for the WBW method, on the other hand, will be 
in the nearshore where the wave heights drop off quickly.  

rmsH

 

Figure 4.  Mean free-surface position data and predictions 

The model predictions for the magnitude and profile of the undertow are compared with data 
measured at 10 cross-shore locations in Figure 5. The problems of accurate undertow prediction are 
compounded by a reliance on the total mass flux parameterization, which, in turn, is dependent on 
the solution of the energy equation. Despite this challenge, the undertow magnitude predictions of 
the model compare well with the measured data. The shape of the current profile is also predicted 
well with differences between the WBW and RMS methods due to the contrasting cross-shore 
distributions of wave height and associated radiation stresses.  
 
Computed and measured steady longshore currents are shown in Figure 6. The model uses the 
measured (and negative) longshore velocity at the first measurement location as a seaward boundary 
condition. It is interesting to note, however, that the specification of a non-zero boundary condition 
on the seaward boundary has only a localized effect. The only mechanism for non-local generation 
and dissipation of longshore current is due to the momentum mixing, and the influence of the 
seaward boundary drops off with a weak mixing effect. The profile is well predicted with 
NEARHYDS and the difference between the WBW and RMS formulations is small.  
 
SUMMARY:  The model NEARHYDS solves the phase-averaged energy equation to determine the 
cross-shore distribution of RMS wave heights and the associated radiation stresses. In turn, the wave 
stresses act as a forcing mechanism in the depth-integrated cross-shore and alongshore momentum  
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Figure 5.  Undertow data and predictions 

equations that include mixing and bottom friction. Finally, with use of the previously described 
analyses, the depth variation of the currents can be determined based on the horizontal Reynolds 
equations.  
 
The prediction of wave height is shown to differ based on the choice of RMS or WBW formulations, 
although both methods predict  reasonably well. The differences in the computed setup are 
consistent with the varied wave height predictions. The longshore current computations agree well 
with data both in magnitude and profile shape. The undertow predictions, on the other hand, show 
greater error when compared with data. Additionally, the undertow profile is shown to be sensitive to 
the solution of the energy equation.  

rmsH

 
Model input requirements include 1-D (cross-shore) bathymetry and incident wave parameters 
( ). Options include RMS or WBW formulations, bottom friction formulation, mixing 
coefficients, as well as other solution parameters. NEARHYDS computes the cross-shore distri-
bution of wave height and setup. Additionally, the steady cross-shore and depth dependent current 
fields are computed. Model output is displayed graphically and is recorded to ASCII files. The 
graphical user interface is intended to make NEARHYDS intuitive and simple to use.  

, ,rms pH T α
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Figure 6.  Longshore current data and predictions 

POINT OF CONTACT:  For additional information, or to obtain a copy of the model, contact 
Dr. Bradley Johnson, Coastal Processes Branch, Coastal and Hydraulics Laboratory, U.S. Army 
Engineer Research and Development Center, Vicksburg, MS 39180. Voice: 601-634-4612, FAX: 
601-634-4314 email: Bradley.D.Johnson@erdc.usace.army.mil. 
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