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by Matthew W. Farthing and Christopher E. Kees

PURPOSE: Level set methods are often used to capture interface bahiaviwo-phase, in-
compressible flow models. While level set techniques farcstired computational grids have been
widely investigated, approaches for unstructured mesteeeas mature. This report details the
formulation and implementation of a discontinuous Galefased approach that is suitable for
unstructured meshes and offers potential gains in accluaadyefficiency over more traditional
level set techniques.

INTRODUCTION: Flow of air and water around solid objects can be modeled byrasg
the phases are separated by sharp interfaces and that edcbuthdomain is governed by the
Navier-Stokes equations. The resulting model requiresluigen of the flow field and the location
and evolution of the interfaces. There are many techniquasahle for approximating flow in
each subdomain and many ways to resolve the interfaces.| sevemethods represent one such
class of techniques for capturing interface behavior thatlieen applied successfully to problems
in fields from computational geometry to fluid mechanics (@snd Fedkiw 2001, Sethian 2001).
Among other things, the appeal of level set methods can bibwtd to the generality of their
formulation, ability to resolve interfaces accurately lghallowing for topological changes, and
relatively straightforward extension to higher dimensilgoroblems (Sethian 1999).

Level set methods for structured grids are fairly maturehi@a 2001, Osher and Fedkiw 2001).
Although extensions for general interface propagatiorbl@ms as well as two-phase flow have
been considered (Barth and Sethian 1998, Sethian and Mia@&y2000, Nagrath et al. 2005,
Smolianski 2005), approaches for unstructured meshegssenature. With this in mind, we are
interested in the design and implementation of level sétrtieies for air/water flow that naturally
apply to unstructured tetrahedral meshes and are weltdaitistributed computing architectures.

Standard level set methodology builds upon an accurateatiiation for a linear hyperbolic partial
differential equation (PDE) or an equivalent Hamiltonala@dormulation (Sethian 2001). It also
relies heavily on an effective reinitialization technigbhat must be employed at intermediate times
to recover the accuracy of the level set representatioredfuid front (Sussman and Fatemi 1999).

In this report we focus on the implementation of an altexegirategy that employs a Runge-Kutta
discontinuous Galerkin (RKDG) discretization (Cockbumde&shu 2001) and exploits the fluid
incompressibility assumption (Marchandise et al. 2006ith\ufficiently high-order approxima-
tions, this method potentially offers accurate solutiofith\good mass conservation, while obviat-
ing the reinitialization step. It also lends itself to fulbxplicit time integration and a quadrature-
free implementation that is readily parallelizable (Atkend Shu 1996, Baggag et al. 1999).

FORMULATION: We begin with a physical domainin which an interfacé’(¢) evolves over
a time intervall0, 7']. To characterizé'(¢), we adopt a level set formulation and define implicitly
a functiong(x, t) such thatp(x, t) = 0 corresponds td'(¢). In this case, the propagation Bft)
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with normal speed,, can be expressed as (Osher and Fedkiw 2001, Sethian 2001)
9¢
n +u,|Vo| = 0, forx,t € Qx (0,T] (1)

with the initial datap(x, 0) = ¢"(x), chosen so that’(x) = 0 onT'(0). We further require that
#°(x) be a signed distance (i.e)?(x) = +d whered is the distance td’), although this is not
strictly necessary (Olsson and Kreiss 2005).

Successful level set approximations require accurateisolaf Equation 1 and a suitable velocity,
u, defined throughout that gives the correct front propagation speegd,onI’ (Sethian 2001). In
addition, these methods typically require an efficient apph for initializingp(x, t = ¢t™) at given
time instanceg,”, that ensures(x, t™) is sufficiently smooth ove® but yet maintaing(x, t") =

0 onI'(¢™) (Sussman and Fatemi 1999). As mentioned in the introdudtieremphasis here is on
one configuration of discrete approximations and solutigorghms that attempts to address the
above requirements and may hold promise for simulatingiphase, incompressible fluid flow.

Conservative level set equation formulation: The approaches considered rely
on discontinuous Galerkin (DG) spatial discretizationsibtain accurate numerical solutions for
¢ on unstructured meshes. DG approximationsgf@an be obtained in at least two ways. Equa-
tion 1 can be solved directly using a general RKDG formulafior Hamilton-Jacobi equations
(Hu and Shu 1999, Li and Shu 2005). Or, we can take advantage &dct that our area of interest
is incompressible, multiphase flow in order to apply methimdsolving conservative, linear ad-
vection problems. We follow Marchandise et al. (2006) anopathe latter approach here, since it
allows us to use tools we have previously developed for sgIADEs with DG methods (Li et al.
2007).

First, Equation 1 is equivalent to solving

99

E +u- V¢ =0 (2)
for an appropriately defined. In the case of two-phase flow, we can identifywith the fluid
velocity so thatu - n = u,, wheren = V¢/||V¢| is the unit normal to the interfade (Chang

et al. 1996). Equation 2 can then be rearranged as

d¢

o V- (ug) =9V u 3)
which gives
24V (us) =0 @

when the fluid is incompressible (i.&/,- u = 0) (Marchandise et al. 2006).

Element weak formulation: Equation 4 is just the linear advection equation in conser-
vative form, and a weak formulation follows in a standard {@gckburn and Shu 2001). Given a
triangulation,M", of (2 and an elemerf € M", an approximate solution is sought in the space

Vi = {'Uh S LOO(Q) : Uh|g € Vh(E),Vé" S ./\/lh} (5)
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where we denote the local discrete test and trial spaég @5. Multiplying Equation 4 by a test
function and integrating by parts over an elem&nive have

vh% dr = /(bu -V, do — / vpou - ng ds, Yo, € V3, (E) (6)
ot € o€

whereng is the unit outer normal ofi. Inserting a trial solutiow,, € V},(£) gives
Idn
Uh— dz = thu Vo, dx — Uhgbhu ‘g dS, Yu, € Vh(g) (7)
o0&
Since the underlying spaces are discontinuous, the fluxtemial element boundaries is multiply

defined. We then replace the outer flux in the last term of tjfg4ihand side of Equation 7 with a
numerical, upwinded flux

/ e hdr = /gbhu Vuy, dx—/ v u - ngds, Yo, € V3 () (8)
o
where
¢up ¢_ u-ng Z 0
¢* otherwise
o = lirél d(x + eng, t)
N hrgl o(x + eng, t) (9)

That is,¢"? is simply the value ob taken from the upwind element at an element interface.

DISCRETE APPROXIMATION: Equation 8 represents a semi-discrete system on each
element ofM" with coupling across elements introduced through elememhdary fluxes. In the
following, we detail an RKDG discrete approximation for Etjon 8 on affine, simplicial meshes,
which is appealing in its simplicity.

Finite element approximation: We assume that there is a consistently defined, affine
mappingF from a reference elemert, for all £ € M”", where€ is the reference simplex iR¢,
d =1,2,3 (see Figure 1). Alocal basis féris denoted V;} fori = 1, ..., n,, where

Ni = Nz O].'—“_1

and {N;} is a basis forP*(£), the space of polynomials afi of degreek or lower. n, is the
dimension ofP*(€). To define the local shape functiorsy;}, we consider the standard nodal
Lagrangian polynomials ofi (see Figure 2 for thé’?’(é) case). We label the corresponding set of
nodal locationyp; } with Ni(f)j) = 0;;, fori,j =1,...,n,, In general, we follow the convention
of using a hat") to signify quantities associated with a reference eleraadtwrite a trial solution
aso;, = Z?gl ¢’ N;. For convenience, we also defifie- pu and

fe¥ = ¢ 'u-ng (10)

as the upwinded, normal flux along the boundary of
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Figure 1. reference element, £ and mapping F : E—E

Figure 2. Standard Lagrangian nodal locations on reference element £ for P? (triangles)

Quadrature-free approximation: DG methods typically require more degrees of free-
dom than their standard@® Galerkin counterparts and also require the evaluation tf solume
and surface integrals over each element. These factors @adytd increased operation counts
and storage requirements for DG methods, particularly whanerical quadrature is used to eval-
uate element integrals. On the other hand, a quadratuasfrglementation, in which element
and boundary integrals are evaluated analytically, canaedperation counts and storage require-
ments for a DG discretization of Equation 8 significantlyKis and Shu 1996). Although the
standard approach for DG methods is to use numerical irttegréCockburn and Shu 1998), a
guadrature-free implementation for Equation 8 is strdaghtard. In essence, only two basic mod-
ifications are necessary to accommodate the quadrateeybfoach. The first is a projectionfof

in [V,(€)]%, and the other is a representation of numerical fluxes onexieboundaries (Marchan-
dise et al. 2006).

Before describing this quadrature-free RKDG approach, mm®duce some additional notation.
An element boundary is written asand the global set of element boundarieg\itt is {e;}. That
is, {e;} is the set of vertices ioM” in one spatial dimension, the set of edgeshitt for two-
dimensional problems, and faces in three dimensions. A& {iJds used to distinguish quantities
associated with element boundaries.

In the following, we restrict ourselves to conforming meshad introduce a local trial spatg(e)
on eachR?! element boundary;, contained inV" (Atkins and Shu 1996). For lack of better
notation, we label the basis fdf,(¢) as{N;}, fori = 1,...,7,, and theR?"! reference simplex
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asé (¢ is a point ford = 1). We defineN; as before
Ni = NZ (¢] G_l
whereG is a consistently chosen map franto e and{N,},i = 1,...,7, is a basis foiP*(¢). A

natural fit is to use a Lagrangian basis flf(¢) with associated nodgs; € R%".

For every element, we require a mapping from the elemend@idp, () to Vi, (e) for eache € €.
Accordingly, we introduce the trace mappifig : V,,(€) — Vi.(e))

TE(N;) = ) TN (11)
i=1
Tlgzg = Nj(ﬁi)? ﬁi:G(I%i) (12)

In other words, for each boundary faeg, of an element, we have a local matrii‘;€ € Rwxm
that takes members of the element trial/test space de-h dimensional space defined on the
boundary face that is independent of the element’s localdioate system. Similarly, the transpose
of T¢ can be used to map frof, (e;) to V4, (£).

To definef;, € [V,,(€)]¢, we use either a coordinate-wié projection

/f,’fNidx:/gbhukNidx,izl,...,np,kzl,...,d (13)
& &
or simple nodal interpolation

f;f’j:gbjuk(pj),jzl,...,np, k=1,....d (24)
A unique upwinded numerical flug”? € Vj,(e) is also necessary for eaete M”". We set

Tip

£ =" [N, (15)

j=1

with fu»7 = ¢uPiu - n.(p;). The unit outer normaly,, is arbitrarily chosen to point from “left”
to “right,” so that it will be & the unit outer normal for the elements neighboring he value of
¢," is defined using the left and right traces

679 = Gi7(5,)

{ %(@j_) . (16)

The left and right traces are defined simply by mapping thalletement degrees of freedom,
¢¢ € R, from the neighboring element§{ and£™), to the corresponding degrees of freedom
for Vh(e)

= TlL¢L

gbL
¢ = Then (17)
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where quL/R € R™. The subscripts and!’ are local numberings for for the left and right
neighboring elements, respectively.

Inserting the new notation into Equation 8, we have

d+1

éW/NN dz = /fh VNdx—Z/NfE’ZdS (18)

fori = 1,...,n, and fgl = f¥n. - ng. The three spatial integrals in Equation 18 can now
be calculated analytlcally over each element, and the sporeding semi-discrete system can be
integrated in time using a method of lines approach and & daRunge-Kutta time discretiza-
tions (Marchandise et al. 2006). Calculation of the spatigigrals for two-dimensional triangular
meshes is detailed in Appendix A.

Time integration: To integrate Equation 18, we use a class of explicit, straalilty pre-
serving (SSP) Runge-Kutta schemes. The SSP property isl lnssthe assumption that, for a
given problem, a forward Euler time discretization is stalohder a given norm (and suitable time
step constraint). An SSP method is then one that maintaisstability with possibly different
approximation order and time step constraint (Gottlied.2@01). For our purposes, we can con-
sider linear ordinary differential equation (ODE) systesiace the mass matrix in Equation 18 is
invertible and limiting is not used (Cockburn and Shu 200aydhandise et al. 2006). That is, we
have an ODE system

dy
- L 19
dt y (19)
An s-stage family of Runge-Kutta methods that are SSP for Eqndt® can be written
y0 _ yn
y" o= y" ALy form=1,...,5— 1
s—2
ys — Zas,kyk+as7s—1 (ys—l _|_Atn+1|_ys—1)
k=0
y't =y (20)

for suitably chosen coefficients, ,, £ = 0,...,s — 1 (Gottlieb et al. 2001). A DG discretization
of orderp should be stable for Equation 20 with the Courant-Friedricbwy (CFL) condition

h
At < ——— 21
c(2p+1) (21)
wherel is the element size and> |lu]| for all £ € M" (Cockburn and Shu 2001, Marchandise
et al. 2006). For the numerical experiments below, we usg théth version of Equation 20 along
with Equation 21 when the spatial approximation is based’6relements. The corresponding
coefficients can be found in Table 3.1 of Gottlieb et al. (2001

NUMERICAL EXPERIMENTS: To evaluate our quadrature-free RKDG approach, we
consider several classical test problems for propagatitegfaces with a specified velocity (Rider
and Kothe 1995, Sussman and Fatemi 1999, Pilliod and Pu2&é#, Olsson and Kreiss 2005,
Marchandise et al. 2006).
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Test problems: The physical domain for the first test problem (PAXis= [0, 1] x [0, 1],
and the velocity field is1 = [2n(y — 1/2),27(1/2 — z)]. The exact solution is a cone of radius
ro = 1/8. A parameterization for the exact solutia#i?, is

5,y ) {<1+COS<”/T0>><1+cos<wy/ro>>/4, 5] < ro

0 otherwise
(22)
wherez = x — z.,y =y — y., and
x. =sin(2nt) /44 1/2, y. = cos(27t) /4 + 1/2
The second problem (PB) is set @n= [0, 1] x [0, 1] with a velocity field given by
u® = cos(rt/8)sin(2my) sin’(7x)
uY = —cos(mt/8)sin(27x) sin’(7y) (23)

The initial condition is a disk of radius 0.15 centered(@®, 0.75), with an initial signed distance
functiondy = (z — 0.5)% + (y — 0.75)% — 0.15%. The solution should return to the initial condition
at’ = 8.

The final example (PC) is o = [0, 100] x [0, 100] with a velocity field
u = (7(50 — y) /314, 7(x — 50)/314)"

The initial condition is Zalesak’s slotted disk with a rasliof 15, width of 5, and slot length of 15
(Sussman and Fatemi 1999, Marchandise et al. 2006).

[llustrative results: For each problem, a regular triangulationf®@fwas formed withV,
triangles along the: axis, andN, triangles along the axis. Simulations were performed with
varying orders of approximation from = 1,...,4. A target Courant number, Cr, was chosen
close to the maximum allowed for eaéhas given by Equation 21. A dual processor Mac G5 (2
GHz) with 2 GB RAM was used for the computations. The methodeevimplemented il€++
and compiled witlgcc version 3.3 and Ooptimization.

Table 1 summarizes the computations performed for PA, villaitlde 2 contains the corresponding
L' errors, CPU times, and mass errors. The mass error herepysigfined to be the normalized
difference between the mass in the numerical and analgatations. In Table 2}V, is the total
number of degrees of freedom on each mesh. Figure 3 showsitia¢ gondition and solution at
T = 0.5 for a P? approximation on a grid with4 x 64 triangles.

Table 3 summarizes the computations performed for PB, ableé fiacontains the corresponding
errors, total mass errors, and CPU times. Figure 4 showstioecbntour of the numerical solution
for a P? approximation on &4 x 64 regular grid. The exact solution for PB is identical to thi¢iah
condition. The right plot illustrates the significant defation that the solution experiences before
returning to the initial state & = 8. Note the difference in scales for the two plots.

The simulations performed for PC are summarized in TableMlewigure 5 illustrates the rel-
ative accuracy for first- through fourth-order approxiraati on the sam28 x 128 grid. The
difference in accuracy is most evident around corners, avtiex lower order methods are smeared
significantly (Sussman and Fatemi 1999, Marchandise e08b62
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Figure 3. Solution PA.2, T'= 0.5

| Table 1. Simulation summary PA |

Run Problem P* N, N, Ny Cr
PA.1 PA 1 128 128 98304 0.3
PA.2 PA 2 64 64 49152 0.1§
PA.3 PA 3 32 32 20480 0.128
PA.4 PA 4 16 16 7680 0.1

| Table 2. Simulation results PA |

Run Ly Error Mass Error CPU [s]
PA.1 1.3097 x 10~* 0.000 3.214 x 10?
PA.2 1.1110 x 1074 0.000 2.048 x 102
PA.3 1.5038 x 107* 5.600 x 107 8.237 x 10*
PA.4 3.3699 x 10~ 2.230 x 10~®> 2.805 x 10!

| Table 3. Simulation summary PB |

Run Problem P* N, N, Cr
PB.1 PB 1 128 128 0.3
PB.2 PB 2 64 64 0.18
PB.3 PB 3 64 64 0.128
PB.4 PB 4 32 32 0.1

DISCUSSION: The numerical results above are preliminary. They inditiedéa quadrature-
free RKDG approach can accurately resolve propagatingfaates for simple rotating velocity
fields and more complex two-dimensional flows as in PB (Rida Hothe 1995). The results
show that higher order approximations are more accuratdésame spatial resolution. In some

8
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Figure 4. PB.2. ¢ (black), ¢ (blue) at T = 8 [left]. ¢ at T = 1.8 [right]

| Table 4. Simulation results PB

Run L, Error Mass Error CPU [s]
PB.1 2.6219 x 103 0.000 1.416 x 103
PB.2 1.6250 x 1073 0.000 8.199 x 102
PB.3 1.0616 x 1073 0.000 2.566 x 103
PB.4 1.6091 x 10~2 1.000 x 1076 8.113 x 102
| Table 5. Simulation summary PC |
Run Problem P* N, N, Cr
PC.1 PC 1 128 128 0.3
PC.2 PC 2 128 128 0.18
PC.3 PC 3 128 128 0.128
PC.4 PC 4 128 128 0.1
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Figure 5. PC, T = 628. Zero contour, P! (blue), P? (red), P? (green), and P* (black)
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cases, similar accuracy can be achieved for much coarser meshes with higher order approximations
and an overall reduction in computational effort. However, this work does not constitute a rigorous
evaluation of computational efficiency. Moreover, the methods’ performance needs to be evaluated
for problems in which there is nontrivial coupling between the interface location and fluid flow.

ADDITIONAL INFORMATION: This CHETN is a product of the High Fidelity Vessel Ef-

fects Work Unit of the Navigation Systems Research Program being conducted at the U.S. Army
Engineer Research and Development Center, Coastal and Hydraulics Laboratory. Questions about
this technical note can be addressed to Dr. Christopher Kees (Voice: 601-634-3110,

email:chri st opher. e. kees@r dc. usace. ar ny. m | ). For information about the Nav-
igation Systems Research Program, please contact the Navigation Systems Program Manager,
Dr. John Hite (Moice: 601-634-2402, emailohn. E. Hi t e@r dc. usace. arny. m | ). This
technical note should be cited as follows:

Farthing, M., and C. Kees. 280Implementation of discontinuous Galerkin methods
for the level set equation on unstructured mesl@sastal and Hydraulics Engineering

Technical Note ERDC/CHL CHETN XIlI-2. Vicksburg, MS: U.S. Army Engineer
Research and Development Center.
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APPENDIX A. ELEMENT INTEGRAL CALCULATIONS: To illustrate the cal-
culations necessary to evaluate Equation 18 analyticayconsider a two-dimensional example.
The element matrix on the left-hand side of Equation 18 isstaadard mass matrix

& £

WhereJ is the Jacobian df. The value ofl is constant on each element, sidtés affine, and
M = (M;;) € R™* is only a function of the reference element and the local stfiapctions
chosen.

The first integral on the right-hand side of Equation 18 is alsaightforward to calculate. Recall-
ing thatVN; = J-*V N; and setting;, = [fF f/]!, we have

/gf-VNidx = |detj|ig“m +|detJ|Zg“D§’J (25)
g™ = f””’jJﬁlify’lea (26)
P9 = I @7)
D}, = aa‘]\f N, didj (28)
Dl = 08]5 N; didg (29)

Using the local trace mapping (transposed) to write

> TEN; (30)
j=1

the boundary integral in Equation 18 can be written in terfrt® element boundary flux degrees
of freedom{ 777} for j = 1,...,n, and local element matrices

/ leg,:ll)ds = al|el|ZBlzg o (31)
€l
Blg,ij = Z My T, ik (32)
Ml,ij = / N N ds (33)

Here,alg = n¢ - n,, accounts for the current element’s outer normal orientateative to the
unique global orientation assigned to the boundary face.
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For each¢ € M", we can define element degree of freedom veafgrsg?, andgg in R™ and
for each element boundary, a vector of numerical flux degrees of freedditf, € R™. We then
have the local elemental equation

d+1
led]

~ Oope o o
M—% = D% +DY%% —afy —— _BIfP 34
ot g+ Dge al;\detﬂ ot (34)

APPENDIX B. P? LOCAL MATRICES FOR TRIANGLES: Finally, we repro-
duce the local element matrices for a triangular mesh wiftt docal approximation space. The
barycentric coordinates ahare

o 1—4—19

AN o= T

Ao =7 (35)
The P? shape functions are then

No = M(2X—1)

Ny = M2\ —1)

No = XA(2X —1)

Ny = 44X\

Ny = 4\h

Ny = 4Xo)o (36)

The nodal locations associated W{th; }, i = 0, . . ., 5 are illustrated in Figure 6. Note that, in the
matrix definitions below, the edges are numbered countekalise aroundt starting with thet
axis.

1 2

Figure 6. Standard Lagrangian nodal locations on reference triangle & for P2
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